%PDF- %PDF-
Direktori : /usr/local/go119/src/runtime/ |
Current File : //usr/local/go119/src/runtime/mkfastlog2table.go |
// Copyright 2015 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. //go:build ignore // fastlog2Table contains log2 approximations for 5 binary digits. // This is used to implement fastlog2, which is used for heap sampling. package main import ( "bytes" "fmt" "log" "math" "os" ) func main() { var buf bytes.Buffer fmt.Fprintln(&buf, "// Code generated by mkfastlog2table.go; DO NOT EDIT.") fmt.Fprintln(&buf, "// Run go generate from src/runtime to update.") fmt.Fprintln(&buf, "// See mkfastlog2table.go for comments.") fmt.Fprintln(&buf) fmt.Fprintln(&buf, "package runtime") fmt.Fprintln(&buf) fmt.Fprintln(&buf, "const fastlogNumBits =", fastlogNumBits) fmt.Fprintln(&buf) fmt.Fprintln(&buf, "var fastlog2Table = [1<<fastlogNumBits + 1]float64{") table := computeTable() for _, t := range table { fmt.Fprintf(&buf, "\t%v,\n", t) } fmt.Fprintln(&buf, "}") if err := os.WriteFile("fastlog2table.go", buf.Bytes(), 0644); err != nil { log.Fatalln(err) } } const fastlogNumBits = 5 func computeTable() []float64 { fastlog2Table := make([]float64, 1<<fastlogNumBits+1) for i := 0; i <= (1 << fastlogNumBits); i++ { fastlog2Table[i] = log2(1.0 + float64(i)/(1<<fastlogNumBits)) } return fastlog2Table } // log2 is a local copy of math.Log2 with an explicit float64 conversion // to disable FMA. This lets us generate the same output on all platforms. func log2(x float64) float64 { frac, exp := math.Frexp(x) // Make sure exact powers of two give an exact answer. // Don't depend on Log(0.5)*(1/Ln2)+exp being exactly exp-1. if frac == 0.5 { return float64(exp - 1) } return float64(nlog(frac)*(1/math.Ln2)) + float64(exp) } // nlog is a local copy of math.Log with explicit float64 conversions // to disable FMA. This lets us generate the same output on all platforms. func nlog(x float64) float64 { const ( Ln2Hi = 6.93147180369123816490e-01 /* 3fe62e42 fee00000 */ Ln2Lo = 1.90821492927058770002e-10 /* 3dea39ef 35793c76 */ L1 = 6.666666666666735130e-01 /* 3FE55555 55555593 */ L2 = 3.999999999940941908e-01 /* 3FD99999 9997FA04 */ L3 = 2.857142874366239149e-01 /* 3FD24924 94229359 */ L4 = 2.222219843214978396e-01 /* 3FCC71C5 1D8E78AF */ L5 = 1.818357216161805012e-01 /* 3FC74664 96CB03DE */ L6 = 1.531383769920937332e-01 /* 3FC39A09 D078C69F */ L7 = 1.479819860511658591e-01 /* 3FC2F112 DF3E5244 */ ) // special cases switch { case math.IsNaN(x) || math.IsInf(x, 1): return x case x < 0: return math.NaN() case x == 0: return math.Inf(-1) } // reduce f1, ki := math.Frexp(x) if f1 < math.Sqrt2/2 { f1 *= 2 ki-- } f := f1 - 1 k := float64(ki) // compute s := float64(f / (2 + f)) s2 := float64(s * s) s4 := float64(s2 * s2) t1 := s2 * float64(L1+float64(s4*float64(L3+float64(s4*float64(L5+float64(s4*L7)))))) t2 := s4 * float64(L2+float64(s4*float64(L4+float64(s4*L6)))) R := float64(t1 + t2) hfsq := float64(0.5 * f * f) return float64(k*Ln2Hi) - ((hfsq - (float64(s*float64(hfsq+R)) + float64(k*Ln2Lo))) - f) }