%PDF- %PDF-
Mini Shell

Mini Shell

Direktori : /usr/local/lib/python3.8/lib-dynload/
Upload File :
Create Path :
Current File : //usr/local/lib/python3.8/lib-dynload/_decimal.cpython-38.so

ELF	>@@8
@@@@000[0[gj(p) h  RtdgPtdddd44QtdpppFreeBSD
 !"0A]o$3HT`m/@Xi|$4G_kv+9Qi#/G^p*6D\m#*5DSeo	,9HRan}		 	)	2	?	S	]	k	|											

 
+
5
>
K
T
a
l
u











/BN]m{	"3DRcp~




kk
@P$
(z.
G~,BF9/u;'?Jz%I nDR>^aqQEXOvKo4\U(WcpdZVY2Tmi:NS&j|

$0	6-.G)M@8h`C#1l<=7L_s3Py5!}k]wb{~*[gxAr"+fHte_fini_init_Jv_RegisterClasses__cxa_finalizePyArg_ParseTuplePyArg_ParseTupleAndKeywordsPyBaseObject_TypePyBool_FromLongPyComplex_AsCComplexPyComplex_FromDoublesPyComplex_TypePyContextVar_GetPyContextVar_NewPyContextVar_SetPyDict_GetItemStringPyDict_GetItemWithErrorPyDict_NewPyDict_SetItemPyDict_SetItemStringPyDict_SizePyErr_ClearPyErr_FormatPyErr_NewExceptionPyErr_NoMemoryPyErr_OccurredPyErr_SetObjectPyErr_SetStringPyExc_ArithmeticErrorPyExc_AttributeErrorPyExc_KeyErrorPyExc_OverflowErrorPyExc_RuntimeErrorPyExc_TypeErrorPyExc_ValueErrorPyExc_ZeroDivisionErrorPyFloat_AsDoublePyFloat_FromDoublePyFloat_FromStringPyFloat_TypePyImport_ImportModulePyInit__decimalPyList_AppendPyList_AsTuplePyList_GetItemPyList_NewPyList_SizePyLong_AsLongPyLong_AsSsize_tPyLong_FromLongPyLong_FromSsize_tPyLong_FromUnsignedLongPyLong_TypePyMem_FreePyMem_MallocPyMem_ReallocPyModule_AddObjectPyModule_AddStringConstantPyModule_Create2PyObject_CallFunctionPyObject_CallFunctionObjArgsPyObject_CallMethodPyObject_CallObjectPyObject_FreePyObject_GenericGetAttrPyObject_GenericSetAttrPyObject_GetAttrStringPyObject_HashNotImplementedPyObject_IsInstancePyObject_IsTruePyTuple_NewPyTuple_PackPyTuple_SizePyTuple_TypePyType_GenericNewPyType_IsSubtypePyType_ReadyPyType_TypePyUnicode_AsUTF8AndSizePyUnicode_AsUTF8StringPyUnicode_ComparePyUnicode_CompareWithASCIIStringPyUnicode_DecodeUTF8PyUnicode_FromFormatPyUnicode_FromStringPyUnicode_FromWideCharPyUnicode_InternFromStringPyUnicode_NewPy_BuildValue_PyLong_GCD_PyLong_New_PyObject_New_PyUnicode_IsWhitespace_PyUnicode_Ready_PyUnicode_ToDecimalDigit_Py_Dealloc_Py_FalseStruct_Py_NoneStruct_Py_NotImplementedStruct_Py_TrueStruct_Py_ascii_whitespace__isinf__stack_chk_fail__stack_chk_guardmbstowcsmemcpympd_adjexpmpd_arith_signmpd_callocfuncmpd_callocfunc_emmpd_classmpd_clear_flagsmpd_compare_totalmpd_compare_total_magmpd_delmpd_etinympd_etopmpd_freempd_getclampmpd_getemaxmpd_geteminmpd_getprecmpd_getroundmpd_iscanonicalmpd_isdynamic_datampd_isfinitempd_isinfinitempd_isnanmpd_isnegativempd_isnormalmpd_ispositivempd_isqnanmpd_issignedmpd_issnanmpd_isspecialmpd_issubnormalmpd_iszerompd_lsnprint_signalsmpd_mallocfuncmpd_maxcontextmpd_parse_fmt_strmpd_qabsmpd_qaddmpd_qandmpd_qcmpmpd_qcomparempd_qcompare_signalmpd_qcopympd_qcopy_absmpd_qcopy_negatempd_qcopy_signmpd_qdivmpd_qdivintmpd_qdivmodmpd_qexpmpd_qexport_u32mpd_qfinalizempd_qfmampd_qformat_specmpd_qget_ssizempd_qimport_u32mpd_qinvertmpd_qlnmpd_qlog10mpd_qlogbmpd_qmaxmpd_qmax_magmpd_qminmpd_qmin_magmpd_qminusmpd_qmulmpd_qncopympd_qnewmpd_qnext_minusmpd_qnext_plusmpd_qnext_towardmpd_qormpd_qplusmpd_qpowmpd_qpowmodmpd_qquantizempd_qreducempd_qremmpd_qrem_nearmpd_qrotatempd_qround_to_intmpd_qround_to_intxmpd_qscalebmpd_qset_ssizempd_qset_stringmpd_qset_uintmpd_qsetclampmpd_qsetemaxmpd_qseteminmpd_qsetprecmpd_qsetroundmpd_qsetstatusmpd_qsettrapsmpd_qshiftmpd_qsqrtmpd_qsset_ssizempd_qsubmpd_qxormpd_reallocfuncmpd_round_stringmpd_same_quantummpd_set_flagsmpd_set_positivempd_set_signmpd_setdigitsmpd_seterrormpd_setminallocmpd_setspecialmpd_signmpd_to_eng_sizempd_to_scimpd_to_sci_sizempd_traphandlermpd_validate_lconvmpd_versionsnprintfstrcmpstrlenlibc.so.7FBSD_1.0/usr/local/lib:/usr/local/liblibmpdec.so.3libthr.so.3$)()0H +X0.{/ț5Ȝ0 Xh(@b ȟ`d xefؠfx4`PȡQ4v (n@*H`h{mȢPQ (O@jH`hph:ȣ`=У0@أCEIM0OP0R@PRP`STVc| e} (@g8p~@H`iX `hkxemDo0ȥPrإIoP@t (w8@@HpzX@`h}xPPȦ0ئcP o(8@HPX`Yhx`0`ȧاP ( 8@+HPX@`!hx@pȨ@بPN`И +(8@lHX0`fh@x)`ȩ0ة4@p [(8p@HX@`Thx`нȪ@تk@   (80@HX@`h@xx@@ȫP (@H`h4  >0`pEȭE`0`8P`Xp`x``Ю`خE`0`8@P`p`Я`د``0`8P`Xp`x``а`ذ(08HPX@h0px0ȱ@бرe (`0D8pHPXh0pIxp@l`Ȳ@вزCP
( 08H`P(Xhpx0 ȳгس @p(0c8 H@PX`"hpox$@'P)ȴ@дش,@0`0(0N80HpPYX1hp`xp102@2ȵе!ص3p4@05(085HPX6h@p+xp7g088ȶж+ض@9 a:pl ;(0f8p<HP)X=h`px??AȷPз4ط@B`D[F(0T8HHPXKhpx`M@ORȸиkظS0V`X(0?8XH PxX@:pxX@:`Zȹйع]pP_ p_8@_H``hp`p`Ea a(aaغGab08P@HPPPXP`{hPpPxP*fлػE(Ga (b@HcffPghhPc (i8`Uȉ0	@(H P! %12؉34<<`==@=(@FG8Jx]^p_X`ahdijr`Љ\IQȽн&ؽ?:875CD; (/0S86@HoP
X`PhpxcȾоؾ|hTfH (08#@AHPXX`h2p(xU}ȿ$пؿ*' (0W8"@bH-PX`hpxxz{ (~08g@HPX`khpmxn90l.VK3e R(L0
8@HOPXy`MhZpYx[E,N=>+)Bp q(v0t8u@wHsP<X`hd
d
?ȶҶٶDecimal(value="0", context=None)
--

Construct a new Decimal object. 'value' can be an integer, string, tuple,
or another Decimal object. If no value is given, return Decimal('0'). The
context does not affect the conversion and is only passed to determine if
the InvalidOperation trap is active.

exp($self, /, context=None)
--

Return the value of the (natural) exponential function e**x at the given
number.  The function always uses the ROUND_HALF_EVEN mode and the result
is correctly rounded.

ln($self, /, context=None)
--

Return the natural (base e) logarithm of the operand. The function always
uses the ROUND_HALF_EVEN mode and the result is correctly rounded.

log10($self, /, context=None)
--

Return the base ten logarithm of the operand. The function always uses the
ROUND_HALF_EVEN mode and the result is correctly rounded.

next_minus($self, /, context=None)
--

Return the largest number representable in the given context (or in the
current default context if no context is given) that is smaller than the
given operand.

next_plus($self, /, context=None)
--

Return the smallest number representable in the given context (or in the
current default context if no context is given) that is larger than the
given operand.

normalize($self, /, context=None)
--

Normalize the number by stripping the rightmost trailing zeros and
converting any result equal to Decimal('0') to Decimal('0e0').  Used
for producing canonical values for members of an equivalence class.
For example, Decimal('32.100') and Decimal('0.321000e+2') both normalize
to the equivalent value Decimal('32.1').

to_integral($self, /, rounding=None, context=None)
--

Identical to the to_integral_value() method.  The to_integral() name has been
kept for compatibility with older versions.

to_integral_exact($self, /, rounding=None, context=None)
--

Round to the nearest integer, signaling Inexact or Rounded as appropriate if
rounding occurs.  The rounding mode is determined by the rounding parameter
if given, else by the given context. If neither parameter is given, then the
rounding mode of the current default context is used.

to_integral_value($self, /, rounding=None, context=None)
--

Round to the nearest integer without signaling Inexact or Rounded.  The
rounding mode is determined by the rounding parameter if given, else by
the given context. If neither parameter is given, then the rounding mode
of the current default context is used.

sqrt($self, /, context=None)
--

Return the square root of the argument to full precision. The result is
correctly rounded using the ROUND_HALF_EVEN rounding mode.

compare($self, /, other, context=None)
--

Compare self to other.  Return a decimal value:

    a or b is a NaN ==> Decimal('NaN')
    a < b           ==> Decimal('-1')
    a == b          ==> Decimal('0')
    a > b           ==> Decimal('1')

compare_signal($self, /, other, context=None)
--

Identical to compare, except that all NaNs signal.

max($self, /, other, context=None)
--

Maximum of self and other.  If one operand is a quiet NaN and the other is
numeric, the numeric operand is returned.

max_mag($self, /, other, context=None)
--

Similar to the max() method, but the comparison is done using the absolute
values of the operands.

min($self, /, other, context=None)
--

Minimum of self and other. If one operand is a quiet NaN and the other is
numeric, the numeric operand is returned.

min_mag($self, /, other, context=None)
--

Similar to the min() method, but the comparison is done using the absolute
values of the operands.

next_toward($self, /, other, context=None)
--

If the two operands are unequal, return the number closest to the first
operand in the direction of the second operand.  If both operands are
numerically equal, return a copy of the first operand with the sign set
to be the same as the sign of the second operand.

quantize($self, /, exp, rounding=None, context=None)
--

Return a value equal to the first operand after rounding and having the
exponent of the second operand.

    >>> Decimal('1.41421356').quantize(Decimal('1.000'))
    Decimal('1.414')

Unlike other operations, if the length of the coefficient after the quantize
operation would be greater than precision, then an InvalidOperation is signaled.
This guarantees that, unless there is an error condition, the quantized exponent
is always equal to that of the right-hand operand.

Also unlike other operations, quantize never signals Underflow, even if the
result is subnormal and inexact.

If the exponent of the second operand is larger than that of the first, then
rounding may be necessary. In this case, the rounding mode is determined by the
rounding argument if given, else by the given context argument; if neither
argument is given, the rounding mode of the current thread's context is used.

remainder_near($self, /, other, context=None)
--

Return the remainder from dividing self by other.  This differs from
self % other in that the sign of the remainder is chosen so as to minimize
its absolute value. More precisely, the return value is self - n * other
where n is the integer nearest to the exact value of self / other, and
if two integers are equally near then the even one is chosen.

If the result is zero then its sign will be the sign of self.

fma($self, /, other, third, context=None)
--

Fused multiply-add.  Return self*other+third with no rounding of the
intermediate product self*other.

    >>> Decimal(2).fma(3, 5)
    Decimal('11')


is_canonical($self, /)
--

Return True if the argument is canonical and False otherwise.  Currently,
a Decimal instance is always canonical, so this operation always returns
True.

is_finite($self, /)
--

Return True if the argument is a finite number, and False if the argument
is infinite or a NaN.

is_infinite($self, /)
--

Return True if the argument is either positive or negative infinity and
False otherwise.

is_nan($self, /)
--

Return True if the argument is a (quiet or signaling) NaN and False
otherwise.

is_qnan($self, /)
--

Return True if the argument is a quiet NaN, and False otherwise.

is_snan($self, /)
--

Return True if the argument is a signaling NaN and False otherwise.

is_signed($self, /)
--

Return True if the argument has a negative sign and False otherwise.
Note that both zeros and NaNs can carry signs.

is_zero($self, /)
--

Return True if the argument is a (positive or negative) zero and False
otherwise.

is_normal($self, /, context=None)
--

Return True if the argument is a normal finite non-zero number with an
adjusted exponent greater than or equal to Emin. Return False if the
argument is zero, subnormal, infinite or a NaN.

is_subnormal($self, /, context=None)
--

Return True if the argument is subnormal, and False otherwise. A number is
subnormal if it is non-zero, finite, and has an adjusted exponent less
than Emin.

adjusted($self, /)
--

Return the adjusted exponent of the number.  Defined as exp + digits - 1.

canonical($self, /)
--

Return the canonical encoding of the argument.  Currently, the encoding
of a Decimal instance is always canonical, so this operation returns its
argument unchanged.

conjugate($self, /)
--

Return self.

radix($self, /)
--

Return Decimal(10), the radix (base) in which the Decimal class does
all its arithmetic. Included for compatibility with the specification.

copy_abs($self, /)
--

Return the absolute value of the argument.  This operation is unaffected by
context and is quiet: no flags are changed and no rounding is performed.

copy_negate($self, /)
--

Return the negation of the argument.  This operation is unaffected by context
and is quiet: no flags are changed and no rounding is performed.

logb($self, /, context=None)
--

For a non-zero number, return the adjusted exponent of the operand as a
Decimal instance.  If the operand is a zero, then Decimal('-Infinity') is
returned and the DivisionByZero condition is raised. If the operand is
an infinity then Decimal('Infinity') is returned.

logical_invert($self, /, context=None)
--

Return the digit-wise inversion of the (logical) operand.

number_class($self, /, context=None)
--

Return a string describing the class of the operand.  The returned value
is one of the following ten strings:

    * '-Infinity', indicating that the operand is negative infinity.
    * '-Normal', indicating that the operand is a negative normal number.
    * '-Subnormal', indicating that the operand is negative and subnormal.
    * '-Zero', indicating that the operand is a negative zero.
    * '+Zero', indicating that the operand is a positive zero.
    * '+Subnormal', indicating that the operand is positive and subnormal.
    * '+Normal', indicating that the operand is a positive normal number.
    * '+Infinity', indicating that the operand is positive infinity.
    * 'NaN', indicating that the operand is a quiet NaN (Not a Number).
    * 'sNaN', indicating that the operand is a signaling NaN.


to_eng_string($self, /, context=None)
--

Convert to an engineering-type string.  Engineering notation has an exponent
which is a multiple of 3, so there are up to 3 digits left of the decimal
place. For example, Decimal('123E+1') is converted to Decimal('1.23E+3').

The value of context.capitals determines whether the exponent sign is lower
or upper case. Otherwise, the context does not affect the operation.

compare_total($self, /, other, context=None)
--

Compare two operands using their abstract representation rather than
their numerical value.  Similar to the compare() method, but the result
gives a total ordering on Decimal instances.  Two Decimal instances with
the same numeric value but different representations compare unequal
in this ordering:

    >>> Decimal('12.0').compare_total(Decimal('12'))
    Decimal('-1')

Quiet and signaling NaNs are also included in the total ordering. The result
of this function is Decimal('0') if both operands have the same representation,
Decimal('-1') if the first operand is lower in the total order than the second,
and Decimal('1') if the first operand is higher in the total order than the
second operand. See the specification for details of the total order.

This operation is unaffected by context and is quiet: no flags are changed
and no rounding is performed. As an exception, the C version may raise
InvalidOperation if the second operand cannot be converted exactly.

compare_total_mag($self, /, other, context=None)
--

Compare two operands using their abstract representation rather than their
value as in compare_total(), but ignoring the sign of each operand.

x.compare_total_mag(y) is equivalent to x.copy_abs().compare_total(y.copy_abs()).

This operation is unaffected by context and is quiet: no flags are changed
and no rounding is performed. As an exception, the C version may raise
InvalidOperation if the second operand cannot be converted exactly.

copy_sign($self, /, other, context=None)
--

Return a copy of the first operand with the sign set to be the same as the
sign of the second operand. For example:

    >>> Decimal('2.3').copy_sign(Decimal('-1.5'))
    Decimal('-2.3')

This operation is unaffected by context and is quiet: no flags are changed
and no rounding is performed. As an exception, the C version may raise
InvalidOperation if the second operand cannot be converted exactly.

same_quantum($self, /, other, context=None)
--

Test whether self and other have the same exponent or whether both are NaN.

This operation is unaffected by context and is quiet: no flags are changed
and no rounding is performed. As an exception, the C version may raise
InvalidOperation if the second operand cannot be converted exactly.

logical_and($self, /, other, context=None)
--

Return the digit-wise 'and' of the two (logical) operands.

logical_or($self, /, other, context=None)
--

Return the digit-wise 'or' of the two (logical) operands.

logical_xor($self, /, other, context=None)
--

Return the digit-wise 'exclusive or' of the two (logical) operands.

rotate($self, /, other, context=None)
--

Return the result of rotating the digits of the first operand by an amount
specified by the second operand.  The second operand must be an integer in
the range -precision through precision. The absolute value of the second
operand gives the number of places to rotate. If the second operand is
positive then rotation is to the left; otherwise rotation is to the right.
The coefficient of the first operand is padded on the left with zeros to
length precision if necessary. The sign and exponent of the first operand are
unchanged.

scaleb($self, /, other, context=None)
--

Return the first operand with the exponent adjusted the second.  Equivalently,
return the first operand multiplied by 10**other. The second operand must be
an integer.

shift($self, /, other, context=None)
--

Return the result of shifting the digits of the first operand by an amount
specified by the second operand.  The second operand must be an integer in
the range -precision through precision. The absolute value of the second
operand gives the number of places to shift. If the second operand is
positive, then the shift is to the left; otherwise the shift is to the
right. Digits shifted into the coefficient are zeros. The sign and exponent
of the first operand are unchanged.

from_float($type, f, /)
--

Class method that converts a float to a decimal number, exactly.
Since 0.1 is not exactly representable in binary floating point,
Decimal.from_float(0.1) is not the same as Decimal('0.1').

    >>> Decimal.from_float(0.1)
    Decimal('0.1000000000000000055511151231257827021181583404541015625')
    >>> Decimal.from_float(float('nan'))
    Decimal('NaN')
    >>> Decimal.from_float(float('inf'))
    Decimal('Infinity')
    >>> Decimal.from_float(float('-inf'))
    Decimal('-Infinity')


as_tuple($self, /)
--

Return a tuple representation of the number.

as_integer_ratio($self, /)
--

Decimal.as_integer_ratio() -> (int, int)

Return a pair of integers, whose ratio is exactly equal to the original
Decimal and with a positive denominator. The ratio is in lowest terms.
Raise OverflowError on infinities and a ValueError on NaNs.

Context(prec=None, rounding=None, Emin=None, Emax=None, capitals=None, clamp=None, flags=None, traps=None)
--

The context affects almost all operations and controls rounding,
Over/Underflow, raising of exceptions and much more.  A new context
can be constructed as follows:

    >>> c = Context(prec=28, Emin=-425000000, Emax=425000000,
    ...             rounding=ROUND_HALF_EVEN, capitals=1, clamp=1,
    ...             traps=[InvalidOperation, DivisionByZero, Overflow],
    ...             flags=[])
    >>>


abs($self, x, /)
--

Return the absolute value of x.

exp($self, x, /)
--

Return e ** x.

ln($self, x, /)
--

Return the natural (base e) logarithm of x.

log10($self, x, /)
--

Return the base 10 logarithm of x.

minus($self, x, /)
--

Minus corresponds to the unary prefix minus operator in Python, but applies
the context to the result.

next_minus($self, x, /)
--

Return the largest representable number smaller than x.

next_plus($self, x, /)
--

Return the smallest representable number larger than x.

normalize($self, x, /)
--

Reduce x to its simplest form. Alias for reduce(x).

plus($self, x, /)
--

Plus corresponds to the unary prefix plus operator in Python, but applies
the context to the result.

to_integral($self, x, /)
--

Identical to to_integral_value(x).

to_integral_exact($self, x, /)
--

Round to an integer. Signal if the result is rounded or inexact.

to_integral_value($self, x, /)
--

Round to an integer.

sqrt($self, x, /)
--

Square root of a non-negative number to context precision.

add($self, x, y, /)
--

Return the sum of x and y.

compare($self, x, y, /)
--

Compare x and y numerically.

compare_signal($self, x, y, /)
--

Compare x and y numerically.  All NaNs signal.

divide($self, x, y, /)
--

Return x divided by y.

divide_int($self, x, y, /)
--

Return x divided by y, truncated to an integer.

divmod($self, x, y, /)
--

Return quotient and remainder of the division x / y.

max($self, x, y, /)
--

Compare the values numerically and return the maximum.

max_mag($self, x, y, /)
--

Compare the values numerically with their sign ignored.

min($self, x, y, /)
--

Compare the values numerically and return the minimum.

min_mag($self, x, y, /)
--

Compare the values numerically with their sign ignored.

multiply($self, x, y, /)
--

Return the product of x and y.

next_toward($self, x, y, /)
--

Return the number closest to x, in the direction towards y.

quantize($self, x, y, /)
--

Return a value equal to x (rounded), having the exponent of y.

remainder($self, x, y, /)
--

Return the remainder from integer division.  The sign of the result,
if non-zero, is the same as that of the original dividend.

remainder_near($self, x, y, /)
--

Return x - y * n, where n is the integer nearest the exact value of x / y
(if the result is 0 then its sign will be the sign of x).

subtract($self, x, y, /)
--

Return the difference between x and y.

power($self, /, a, b, modulo=None)
--

Compute a**b. If 'a' is negative, then 'b' must be integral. The result
will be inexact unless 'a' is integral and the result is finite and can
be expressed exactly in 'precision' digits.  In the Python version the
result is always correctly rounded, in the C version the result is almost
always correctly rounded.

If modulo is given, compute (a**b) % modulo. The following restrictions
hold:

    * all three arguments must be integral
    * 'b' must be nonnegative
    * at least one of 'a' or 'b' must be nonzero
    * modulo must be nonzero and less than 10**prec in absolute value


fma($self, x, y, z, /)
--

Return x multiplied by y, plus z.

Etiny($self, /)
--

Return a value equal to Emin - prec + 1, which is the minimum exponent value
for subnormal results.  When underflow occurs, the exponent is set to Etiny.

Etop($self, /)
--

Return a value equal to Emax - prec + 1.  This is the maximum exponent
if the _clamp field of the context is set to 1 (IEEE clamp mode).  Etop()
must not be negative.

radix($self, /)
--

Return 10.

is_canonical($self, x, /)
--

Return True if x is canonical, False otherwise.

is_finite($self, x, /)
--

Return True if x is finite, False otherwise.

is_infinite($self, x, /)
--

Return True if x is infinite, False otherwise.

is_nan($self, x, /)
--

Return True if x is a qNaN or sNaN, False otherwise.

is_normal($self, x, /)
--

Return True if x is a normal number, False otherwise.

is_qnan($self, x, /)
--

Return True if x is a quiet NaN, False otherwise.

is_signed($self, x, /)
--

Return True if x is negative, False otherwise.

is_snan($self, x, /)
--

Return True if x is a signaling NaN, False otherwise.

is_subnormal($self, x, /)
--

Return True if x is subnormal, False otherwise.

is_zero($self, x, /)
--

Return True if x is a zero, False otherwise.

canonical($self, x, /)
--

Return a new instance of x.

copy_abs($self, x, /)
--

Return a copy of x with the sign set to 0.

copy_decimal($self, x, /)
--

Return a copy of Decimal x.

copy_negate($self, x, /)
--

Return a copy of x with the sign inverted.

logb($self, x, /)
--

Return the exponent of the magnitude of the operand's MSD.

logical_invert($self, x, /)
--

Invert all digits of x.

number_class($self, x, /)
--

Return an indication of the class of x.

to_sci_string($self, x, /)
--

Convert a number to a string using scientific notation.

to_eng_string($self, x, /)
--

Convert a number to a string, using engineering notation.

compare_total($self, x, y, /)
--

Compare x and y using their abstract representation.

compare_total_mag($self, x, y, /)
--

Compare x and y using their abstract representation, ignoring sign.

copy_sign($self, x, y, /)
--

Copy the sign from y to x.

logical_and($self, x, y, /)
--

Digit-wise and of x and y.

logical_or($self, x, y, /)
--

Digit-wise or of x and y.

logical_xor($self, x, y, /)
--

Digit-wise xor of x and y.

rotate($self, x, y, /)
--

Return a copy of x, rotated by y places.

same_quantum($self, x, y, /)
--

Return True if the two operands have the same exponent.

scaleb($self, x, y, /)
--

Return the first operand after adding the second value to its exp.

shift($self, x, y, /)
--

Return a copy of x, shifted by y places.

clear_flags($self, /)
--

Reset all flags to False.

clear_traps($self, /)
--

Set all traps to False.

copy($self, /)
--

Return a duplicate of the context with all flags cleared.

create_decimal($self, num="0", /)
--

Create a new Decimal instance from num, using self as the context. Unlike the
Decimal constructor, this function observes the context limits.

create_decimal_from_float($self, f, /)
--

Create a new Decimal instance from float f.  Unlike the Decimal.from_float()
class method, this function observes the context limits.

?BC decimal arithmetic modulegetcontext($module, /)
--

Get the current default context.

setcontext($module, context, /)
--

Set a new default context.

localcontext($module, /, ctx=None)
--

Return a context manager that will set the default context to a copy of ctx
on entry to the with-statement and restore the previous default context when
exiting the with-statement. If no context is specified, a copy of the current
default context is used.

collections.abcto_integral_valuecopy_signO(O)optional arg must be an integerremainderDivisionUndefinedas_integer_ratiomax__format__valueContext(prec=%zd, rounding=%s, Emin=%zd, Emax=%zd, capitals=%d, clamp=%d, flags=%s, traps=%s)UnderflowdecimalCannot hash a signaling NaN valueargument must be a tuple or listprecvalid range for prec is [1, MAX_PREC]valid values for capitals are 0 or 1__exit__MAX_EMAX__module__max_magcontextOverflowminusdecimal.DivisionImpossibleargument must be int or floatto_integralInvalidOperationflags_applyNumberregister1.70(OO)log10as_tuple__deepcopy____reduce__string argument in the third position must be 'F', 'n' or 'N'%sClampedcontext attributes cannot be deletedplusnumberssign digits exponentMutableMappingradixlogical_andothermodulodecimal.RoundedBasicContextDecimal('%s')is_subnormalcanonical__complex__Ncannot convert Infinity to integer ratioargument must be a sequence of length 3internal error in dec_sequence_as_strdecimal.FloatOperationdecimal_contextnumeratornormalizeremainder_nearvalid values for rounding are:
  [ROUND_CEILING, ROUND_FLOOR, ROUND_UP, ROUND_DOWN,
   ROUND_HALF_UP, ROUND_HALF_DOWN, ROUND_HALF_EVEN,
   ROUND_05UP]format arg must be strinvalid format stringsNaNclampinternal error in context_setround(ss)HAVE_CONTEXTVARdec_hash: internal error: please reportexact conversion for comparison failedis_qnan__ceil__realFloatOperationcompare_total_magfrom_float__round__argument must be a signal dictclear_trapsFalsedecimal.InvalidOperationDivisionImpossiblebit_lengthexpto_eng_stringexponent must be an integerSubnormalEtopO(nsnniiOO)decimal.ContextManagerContextDefaultContextExtendedContext__libmpdec_version__decimal.Decimalcompare_totalinternal error in context_reprcopy_decimaldecimal.Overflownext_minusgetcontextFabsmultiplycreate_decimal_from_floatOOOsignal keys cannot be deleteds(OO){}__version__to_integral_exactcompare|OOthirddecimal.Contextdivmodvalid range for Emax is [0, MAX_EMAX]ctxSignalDictDecimalExceptionargument must be an integercannot convert signaling NaN to floatminmin_magrotateO|OOcannot convert NaN to integer ratioConversionSyntaxInvalidContextinternal error: could not find method %snansqrtroundinginternal error in dec_mpd_qquantizeoptional argument must be a dictinvalid decimal point or unsupported combination of LC_CTYPE and LC_NUMERICtrapsinternal error in context_setstatus_dictargument must be a contextlogical_invertO|Onimagdividevalid range for Emin is [MIN_EMIN, 0]decimal.DivisionUndefinedinternal error in flags_as_exceptionnumber_class__trunc__coefficient must be a tuple of digitsOOa__enter__decimal.Clamped(O)DecimalTuplelnis_infiniteis_zeroformat specification exceeds internal limits of _decimaladdargument must be a Decimal|OOOOOOOOMAX_PRECDecimalcannot convert Infinity to integeris_nanconjugatelogical_xorto_sci_stringvalid values for clamp are 0 or 1decimal.DecimalExceptionconversion from %s to Decimal is not supported-nanquantizecopy_negate__copy__internal error in PyDec_ToIntegralValue(i)internal error in context_settraps_dictbEmaxsetcontextdecimal.Subnormalcannot convert NaN to integerlogical_orinternal error in context_settraps_listTruedecimal.ConversionSyntaxdecimal.InvalidContextcollectionsfmaOO|Oinvalid signal dictsubtractpowerclear_flagsvalid values for signals are:
  [InvalidOperation, FloatOperation, DivisionByZero,
   Overflow, Underflow, Subnormal, Inexact, Rounded,
   Clamped]MIN_EMINis_finitesign must be an integer with the value 0 or 1divide_intEminadjusted__floor__decimal_point%liDivisionByZero{<class '%s'>:%s, <class '%s'>:%s, <class '%s'>:%s, <class '%s'>:%s, <class '%s'>:%s, <class '%s'>:%s, <class '%s'>:%s, <class '%s'>:%s, <class '%s'>:%s}decimal.DivisionByZerois_snansame_quantumshiftinvalid override dictdecimal.InexactHAVE_THREADSis_signed|Ooptional argument must be a contextRoundedlocalcontextis_normalcopy_abs__sizeof__thousands_sepdenominatoris_canonicallogbscalebgroupingInexactEtinycopycreate_decimaldecimal.SignalDictMixindecimal.UnderflowRationalnamedtuplenext_pluscompare_signalnext_towardinternal error in PyDec_ToIntegralExactcapitalsinternal error in context_setstatus_listMIN_ETINY;08L,E|<ElEFILKLLQ|U,VX[4^dla,eLij$	LlT	m	m	n	o	lr,
<u\
v
|w
x
z~L|܂<<\l|,
|\

\
̣
<L||̶,<\\|ܹ<ܻ\||,ܽ$T<Dtl4Ld,$TtL,,<\L,LT|4d\l
l<$T,|Dlt\4dL!#%<($*T-0l247D\9t;=L@B4DdlHKKLL,MTM|NLOPPQDLRlSS|TT ,V< Vd X \Y Z \[$!\T!]!_!b!\d"fD"ht"Lk"m"\o#q4#sd#t#<t#u#ly$y4$zd${$|{${$|$,|%|<%|\%}%,}%}%}%,~&l~4&~\&~|&&|&,&L'\<'l\'''L'L(zRx,2PAC
JzAL>AC
Al>%AC
BY,>BAC
KA,?AC
PA,B{AC
KVA,CAC
MQA,LIAC
MA$|(NHAC
BA,PNAC
M}A,PAC
M}A,SAC
M}A,40VAC
M}A,dXAC
MA,`\AC
MA,P`AC
KjA,aAC
KjA,$bAC
KjAT@dAC
S,t@d
AC
KA$ eAC
C,eAC
M}A,8hAC
M}A,,jDAC
J{A,\kAC
MA,l)AC
J,mAC
MA,xoAC
M'A,HsAC
KA,L8uAC
KA,|(wAC
KA,yAC
KA,{AC
KA,|AC
KA,<~AC
KnA,lHAC
KnA,AC
KA,bAC
KMA,؈bAC
KMA,,bAC
KMA,\XbAC
KMA,bAC
KMA,ؕbAC
KMA,bAC
KMA,XAC
MA,LbAC
KMA,|8AC
MA'AC
bȧ'AC
bا'AC
b	'AC
b,	'AC
bL	'AC
bl	'AC
b	('AC
b,	8AC
KA,	ȩAC
KA
X3AC
Bh,
x
AC
HL
h
AC
H$l
XrAC
Cj,
AC
IA,
0AC
IA,
AC
KA,$AC
KA,TAC
KA,AC
KA,.AC
KA,.AC
KA,ZAC
KEA,D AC
KA,tbAC
KMA, bAC
KMA,`bAC
KMA,
bAC
KMA,4
bAC
KMA,d
 bAC
KMA,
`WAC
M@A,
PAC
MA,
AC
M-A$
AC
H,Dp^AC
PA$tSAC
FH,mAC
MVA,
AC
KA,
AC
KA,,
AC
KA,\eAC
BPAI$6AC
Cj$AC
C
AC
H$rAC
Cj,$AC
MgA,TPAC
MA,@|AC
MADAC
Bx,AC
NA,pbAC
CCER449AC
FTEeA,l
AC
MA$AC
B,pAC
FA,KAC
KA,$0KAC
KA,TPKAC
KA,pKAC
KA,KAC
KA,KAC
KA,KAC
KA,DKAC
KA,tKAC
KA,0KAC
KA,PKAC
KA,pKAC
KA,4FAC
M/A,dFAC
M/A,FAC
M/A,
FAC
M/A,
FAC
M/A,$06AC
MA,T@FAC
M/A,`FAC
M/A,FAC
M/A,FAC
M/A,FAC
M/A,DFAC
M/A,tFAC
M/A, !FAC
M/A,@#FAC
M/A,`%FAC
M/A,4'~AC
MgA,d*dAC
MMA.AC
M.AC
M$.rAC
Cj$h.nAC
Bg$$.AC
C$LH/AC
C$t/AC
C$x0AC
C$1AC
C$1AC
C$@2AC
C$<2AC
C$dp3AC
C$4AC
C$4QAC
BJ,4GAC
KA$5AC
CqA,4P6GAC
KA,dp7KAC
KA,8KAC
KA,9AC
CREK,0::AC
KA,$@;:AC
KA,TP<AC
MA,@>AC
MA,0@>AC
M'A,@BFAC
M/A,`DFAC
M/A,DFFAC
M/A,tHFAC
M/A,JAC
MA,PLFAC
M/A,pNFAC
M/A4PAC
STPAC
S,tPWAC
J0A,QAC
MA,`UAC
IxA,UAC
MA4VAC
M$TVfAC
C^|VAC
M$VfAC
C^WAC
M$WfAC
C^XW AC
[$,XWSAC
BLTWAC
E$tWXAC
BQWAC
M$WqAC
CiX?AC
Bt$ 0X>AC
Cv, HX;AC
Bt$L hXAC
C,t PY{AC
PaA$ ZAC
F ([AC
O ([AC
K![AC
F$,![tAC
QA],T!`[AC
FpA,![AC
J,!`\AC
KKA4!0]AC
MAUHSPH=ltH=}DOH%kf.HHHHrHH[]@UHH=ltH=jt
H=j]N]UHAWAVAUATSPH;H
tlHHrlH
slHHqlH
rlHHplH
qlHHolH
plHNL5dlIF`HHH
HH
H@(HH=lHH`HHA@HHBH3H6H L=L(NtH3H Hu
CHkH8H5HJE11MHE1E11H= HtHHuMMtIuLMMtI$uLMHtHuHMH=HtHԤHuyMH=HtHHuWMH=HtHHu5MH=HtH~HuMH=tHtHdHuLH=ZHtHJHuLMtIuLLE1LH[A\A]A^A_]HCHHjIHt7H3H+H L5}LHLtH3H HuCu2HjH8H5HEE11LHKHCH;HHiH\{H=UzH|H~H KH={KH=~KH=D}KnH=TKHYHH=zH5HKH=b|H5ijH{KHuH5KH=iKHHH5H^KIHH5HH
MyL1CKHHuHJH5H
KHHcHuHJIuLJH=JHSIH5HkH
LE1H1JHHDH=TJH
HHYHH5H;JHuHIH=)JHIH5HJHHH=gH5$HH
|E1I1	JHҠHInI$vH~H=C~IH'IHwHwH5eHI(H yHyH5LIH2HH5LwIHfH0H=tE11dIHHHH5LH.I	<IH՟H}E1L-}E1C=tH=upH5Hf?=t==@uRH5W~Hp~H
)~1HBH5THeHH5!~H:~1HH5%1HHHKH1SHKHHuHGKHKKLHlKHKH
JD!XIIH5|H5}H=}?L%}E1A|$uHdH1G1GHHI|$H1mGID$HHuHFID$HIt$IT$L&GI<$H5{I A|$x[E1E1H[HOFNHuH<FMtIuL)FE1"E1E1L	FI$LEHHEuH=uE11FHHHH53LH8FH=tE11oFHHH`cHH5rLHE[HH5LHE=H=5uE11EHHH@	̩@@(KH@,@4HHH8@PHH5߮LHWEH=tE11~EHHH@	O@@(Q
[H<@,@PHH5LHDLIc
L)EH1HH5KLHD+LDHHH5`LH}DHXLIDHHH5LHHDH8>DHHH5xLHDE1L-E1HWaJ H[DK,HRHLHHC8II@uH5H*L$D
'DH5LHD4E1UH]f.UHSPHHCHCHH[]@f.UHAWAVATSHIL=`IHEH=ٙHU1CH]HtNHuHOBIsPLCHIH=GH1CHH_LL%`H=r1BHtgHAD$AL$ AT$0P0H @@0AD$PCPC,H=HCHt7HCHA6C1IH;Eu HH[A\A^A_]HuHeABf.@UHAWAVAUATSHL5-_IHEH_HIHHEE(PE(
	PMHEHEHHEƅXp`HEHEHE
ƅ(@(uO0HEHPDž$LgLBt+L!BH:^H8H5$BHBBHuIBHkIM HHHLHH(HHXHIHH$HAHMLLLHLLH$IALLHA)IGLA(AN)HXLIHHH$LLHIvAHULLHImALHrAHLwAHHمHEHHHEً$uxH\H8H5@eL7AtA1:@
3@L?HI]IH;EuJHH[A\A]A^A_]L@HHi/?HH?L??UHAWAVATSHIL%\I$HEH=xHU1M?H]Ht^HuH=ISPH}Lk@HIL}HǾ^@HHC  H{HL=H=m1Y>HtcHAGAO AW0P0H @@0AGPCPC,H=H>HtcH7H+=*>1)HK0HHH@HELL?HZH}I$H;Eu HH[A\A^A_]HuH<U>DUHAWAVAUATSHXUIIL=ZIHEEH=HU1=WLeMI$uL[<I~HjH9tH5j>oIMML;5 ZM9uIEMoL=EI^H=EHULH>AInIvAL=Y]؃uEEtuL(poL5hYIHȒH=ik12<H9IfCfK fS0fP0fH f@@0CPAD$PAD$,H=yL<HHH:EH
JHcH1AI~urH;=dXtH5[Xf=EtL'ubAL$-H=hLL,1L`:ILN:}H=hLL(II$uL :E1L5XI1E1E1E	1AAIc<IUAAI~H;=WtH5Wo<EL<f.Hu$z"EMu<MEHBfWf.Y<H HAL$-H=gHL+IHH9H54L<H5ңL/9HHH=,gHLA'IHuH8ML}M}L7:tCMLuM\L=tVIH;ELHX[A\A]A^A_]L5VVIEH5L8H?HH=fHL&IHuH8ML*;HHH=Gf";HIH@HHEAG0fWfAG IG0IG8LHHIG@H}c9HH[HFLHLEH}HuHM9I_ IuLV7H}}8}HTUH8H5o8Iu5L7+IuL78IuL6H"8H}Hu6E1L=TX_8f.DUHAWAVAUATSHXIL-TIEHEHEHTHEH!H
zE1LELMHHH19\HEH;nTt;HxHAfH9tdH55f8uTHSH8H57H=jHU1?7H]HH]HuH5LeL}Mt?I|$HdH9tH5dn8EI9t6L1A0?EHcI9L1A0I9\$)H=c8HHAHCH{C0WC HC0HC8HCHHC@IHUL7uL'"HH4I|$H\HfRH8H5rdH=b7IHgID$I\$AD$0WAD$ ID$0ID$8ID$HID$@LuL5HMH1Lq7uL6!I$L3L=7H=c14HHAGAO AW0P0H @@0AGPCPC,H=H4HtkHHo3IhL蓩HtNHLHL
IH63I$,LLL!IHuH3HEE1IEH;ELHX[A\A]A^A_]H;=PtH5}P5tcLuLLL5%II$L6IHtLqHI$uLo2HaH2PH8ID$HPH5E11-2;3UHSPHH= b12Ht%CK S0P0H @@0KPHPH[]UHAWAVAUATSHIIL-OIEHEEH=HU12*LeMI$uL}1IH_H9tH5_!4[II~H9tH5_4TIH=_h4HHH@Hx@0W@ H@0H@8HHHC@IwIVIL$LEg4IIuLCH7H*HH=`1Y1HICK S0P0H @@0CPAD$PAD$,H=L1HHH#0IuL0ILIGuSHMHwIFHMHIuUL/IL/H=]LLIH+I$uLo/1IEH;EuBHH[A\A]A^A_]H=]LLIH1IuL#/0f.fUHAWAVAUATSHIIL-LIEHEEH=<HU10*LeMI$uL.IH]H9tH5\Q1[II~H9tH5\01TIH=\1HHH@Hx@0W@ H@0H@8HHHC@IwIVIL$LE1IIuLCH7H*HH=]1.HICK S0P0H @@0CPAD$PAD$,H=քL.HHHS-IuL@-ILIGuSHKHwIFHJHIuUL,IL,H='[LL<IH+I$uL,1IEH;EuBHH[A\A]A^A_]H=ZLLIH1IuLS,-f.fUHAWAVAUATSHIIL-JIEHEEH=lHU1A-*LeMI$uL+IH2ZH9tH5&Z.[II~H9tH5Z`.TIH=Y.HHH@Hx@0W@ H@0H@8HHHC@IwIVIL$LEg-IIuLHCH7H*HOH=Z1+HICK S0P0H @@0CPAD$PAD$,H=L,HHH*IuLp*ILIGuSHJHHwIFH,HHIuUL*IL*H=WXLLlIH+I$uL)1IEH;EuBHH[A\A]A^A_]H=
XLLIH1IuL)+f.fUHAWAVAUATSHIIL-JGIEHEEH=HU1q**LeMI$uL
)IHbWH9tH5VW+[II~H9tH55W+TIH=W+HHH@Hx@0W@ H@0H@8HHHC@IwIVIL$LE*IIuLxCH7H*HH= X1(HICK S0P0H @@0CPAD$PAD$,H=6L>)HHH'IuL'ILIGuSHzEHwIFH\EHIuULE'IL3'H=ULLIH+I$uL&1IEH;EuBHH[A\A]A^A_]H=:ULLOIH1IuL&<(f.fUHAWAVAUATSH(IHL-zDIEHEEH=}HU1'NLuMaIuL>&H]H{L%TL9LtH5T(HEHH{L9tH5[T(HH=CT)HpIH@@0W@ H@0H@8HHID$@H=S(HILHH@Hp@0W@ H@0H@8HHIE@L}IWHKMFLM(IuL1%HuH#%uLHpIEuL%I$uL$1L%<|H=T1%HIAD$AL$ AT$0P0H @@0AD$PAFPAF,H={L%HH&Hj$H}HuV$HAH4HuHFu`H,BHHCHBHH}HL-AHI$H=,RLDHEHILH=LL1L'HIEuLz#I$uLk#L-\AYH=QHLHHZ1H}Hu/3#(,#H?H#I$uL#1IEH;EuHH([A\A]A^A_]x$UHAWAVAUATSHIIIH@HHEEH=
zHU1#uLmMIEuL{"IHPH9tH5P%II~H9tH5P$IL;%K@I|$H9tH5tP$LI$HKyH=Q1"HICK S0P0H @@0CPAEPAE,H=yL#HHH!LE1H=O$HIH@Hx@0W@ H@0H@8HHIF@IwHSMIL$MELM#I$IHuLIH>LI[HcMg}IGugL5>IcIFL5j>IIMLE$$ISLB HKH0 >H=NLLIHIELID$LL5=IIuLHHH=NLLIH[E1IHw=ueLu[LkIjLTHHBMtI$H)=uL'E1
E1H=HH;EuELH[A\A]A^A_]LH=SMLLh
IHfE1I
U DUHAWAVATSH IL%<I$HEEH=uHU1L}MIuLcH=L!HHH@Hx@0W@ H@0H@8HHHC@IIWHML!uL-HHH7uH=M1HtjICK S0P0H @@0CPAGPAG,H=tLHtHHuIuLb1I$H;EuHH [A\A^A_]UHAWAVATSH IL%;I$HEEH=qtHU1FL}MIuLH=<K HHH@Hx@0W@ H@0H@8HHHC@IIWHMLx uL	HHHsH=XL1!HtjICK S0P0H @@0CPAGPAG,H=tsL|HtHHIuL1I$H;EuHH [A\A^A_]QUHAWAVATSH IL%9I$HEEH=rHU1L}MIuLcH=IHHH@Hx@0W@ H@0H@8HHHC@IIWHMLuL-HHH7rH=J1HtjICK S0P0H @@0CPAGPAG,H=qLHtHHuIuLb1I$H;EuHH [A\A^A_]UHHC1Ʌ]UHAWAVATSHIL=7IHEH=YqHU1.H]Ht#HuHLH޺_
L%qH=I1uHtpHAD$AL$ AT$0P0H @@0AD$PCPC,H=pHHtHnHCaHuH01IH;Mu
H[A\A^A_]UHAVSHLwLjt$Lt"H6H8H5NH!Lt	H=H=xIHtLHIuL1H[A^]f.UHAWAVAUATSHIIL-J6IEHEEH=oHU1q*LeMI$uL
IHbFH9tH5VF[II~H9tH55FTIH=FHHH@Hx@0W@ H@0H@8HHHC@IwIVIL$LEIIuLxCH7H*HnH= G1HICK S0P0H @@0CPAD$PAD$,H=6nL>HHHIuLILIGuSHz4HwIFH\4HIuULEIL3H=DLLIH+I$uL1IEH;EuBHH[A\A]A^A_]H=:DLLOIH1IuL<f.fUHAWAVAUATSHIIL-z3IEHEEH=lHU1*LeMI$uL=IHCH9tH5C[II~H9tH5eCTIH=MC(HHH@Hx@0W@ H@0H@8HHHC@IwIVIL$LEIIuLCH7H*HkH=PD1HICK S0P0H @@0CPAD$PAD$,H=fkLnHHHIuLILIGuSH1HwIFH1HIuULuILcH=ALLIH+I$uL/1IEH;EuBHH[A\A]A^A_]H=jALLIH1IuLlf.fUHAWAVAUATSP	w,Do(D
tGuDH=GtA!HHDhuDH8H@ uH10H8H5*
E1ADH[A\A]A^A_]LxAMt1HtIH=Ht0HHfH;H[ tDktHsLdyKH=VG2HiG@H;H[ tDktHsL$yLL#IAL4f.fUHAWAVAUATSHHL-`/IEHEEHFuH/H8H5@rIHILeLHMLHL}HtFHËuAtH{HU̾xúuLtHuH1IEH;EuHHH[A\A]A^A_]/f.DUHAWAVAUATSPIIIH>H9t
10H=>HHHCLkC0WC HC0HC8HKHHK@ID$HtOHHHLH?HufAT$HIELIELLLLJHIEL1JIELJIL<$LLA@MIHH[A\A]A^A_]UHAWAVAUATSHXAIHL-7-IEHEEHHtHtoH%-H8H5mHIAGAO AW0)U)M)EDeHUHMHHuLtJLH,H8H5ʀOE1IEH;ELHX[A\A]A^A_]EHEH}LE1@L/HHH*HIHHLeHLH+LII?I!f.H~HCA|HtHIMgLtLuIMgL	H$+H}@UHAWAVAUATSHxIHIL%G+I$HEEH~H;=*tH5*Hf.*f)Euzf(EHf(fT
fVf)`f.z	tTH;I9L1A0LHLH)HQ*H8H5%u*1HrcHHH1ccIHuH2MI_I 1AcLHIH}H.IuLILHxHdLHLKHH}HuHW
HsIz
HEHVLxIH}I
HM̾LHUH}LxLLmLHMLLHULLEuLULEH}<H,H=V91HHf(EH{f.HCHHCC0fWfC HC0HC8HC@f(`fH~ƃ)Hu!p
HH}H1I$H;EHHx[A\A]A^A_]L_HuH!
1HHHMLEIHL+L#H}uLtHxH	1kf(`fH~ƃMLLxIMn41DUHAWAVATSH IL=O'IHEHi'HEEHH
 J1LEHHH1jHEH;''t;HxH8H9tdH58uTH&H8H5L
UH=#`HU1	3H]HH]HuHH=6HHH@Hx@0W@ H@0H@8HHHC@IHUHHML
H}ȋuVHHL%X_H=71HtpHAD$AL$ AT$0P0H @@0AD$PCPC,H=_H	HtHHHuH}HE1IH;EuHH [A\A^A_]DUHAWAVATSH IL=/%IHEHI%HEEH}H
H1LEHHH1J
HEH;%t;HxH6H9tdH56	uTH$H8H5,}oUH=^HU13H]HH]HuHqH=4	HHH@Hx@0W@ H@0H@8HHHC@IHUHHMLH}ȋu6HHL%8]H=51HtpHAD$AL$ AT$0P0H @@0AD$PCPC,H=\HHtHHpHuH]HE1IH;EuHH [A\A^A_]DUHAWAVATSH IL=#IHEH)#HEEHl{H
F1LEHHH1*HEH;"t;HxH4H9tdH54iuTHv"H8H5{OUH=[HU13H]HH]HuHQH=2HHH@Hx@0W@ H@0H@8HHHC@IHUHHML	H}ȋuHHL%[H=31HtpHAD$AL$ AT$0P0H @@0AD$PCPC,H=ZHHtHHPHuH=HE1IH;EuHH [A\A^A_]DUHAWAVATSH IL= IHEH	!HEEHLyH
C1LEHHH1
HEH; t;HxH2H9tdH52IuTHV H8H5x/UH=YHU13H]HH]HuH1H=0eHHH@Hx@0W@ H@0H@8HHHC@IHUHHMLrH}ȋuHHL%XH=11bHtpHAD$AL$ AT$0P0H @@0AD$PCPC,H=XHHtHH0HuHHE1IH;EuHH [A\A^A_]DUHAWAVATSH IL=IHEHHEEH,wH
A1LEHHH1HEH;t;HxHz0H9tdH5n0)uTH6H8H5vUH=WHU1x3H]HH]HuHH=j.EHHH@Hx@0W@ H@0H@8HHHC@IHUHHMLbH}ȋuHHL%VH=y/1BHtpHAD$AL$ AT$0P0H @@0AD$PCPC,H=VHHtHHHuHHE1IH;EuHH [A\A^A_]eDUHAWAVATSH IL=IHEHHEEHuH
?1LEHHH1HEH;t;HxHZ.H9tdH5N.	uTHH8H5tUH=UHU1X3H]HH]HuHH=J,%HHH@Hx@0W@ H@0H@8HHHC@IHUHHMLRH}ȋuHHlL%TH=Y-1"HtpHAD$AL$ AT$0P0H @@0AD$PCPC,H=oTHwHtHHHuHHE1IH;EuHH [A\A^A_]EDUHAWAVATSHPIL=IHEHHEHEEHkH
=1LELMHHH1HEH;_t;HxH2,H9tdH5&,uTHH8H5rH=[SHU10H]HH]HuHHE@H P0)E)M)UH}H;=t oFH}XH=)HHH@Hx@0W@ H@0H@8HHHC@IHUHMLH}ȋuIHHHH8H5mL%0RH=*1HtpHAD$AL$ AT$0P0H @@0AD$PCPC,H=QHHtHHhHuHUHE1IH;EuHHP[A\A^A_]f.UHAWAVATSHPIL=IHEHHEHEEHhH
L;1LELMHHH1HEH;t;HxH)H9tdH5)QuTH^H8H5o7H=PHU1H]HH]HuH9HE@H P0)E)M)UH}H;=2t lFH}H=I'$HHH@Hx@0W@ H@0H@8HHHC@IHUHMLuH}ȋuHHoHH8H5oL%OH=A(1
HtpHAD$AL$ AT$0P0H @@0AD$PCPC,H=WOH_HtHHHuHHE1IH;EuHHP[A\A^A_]-f.UHAWAVATSH IL=oIHEHHEEHmH
81LEHHH1HEH;Gt;HxH'H9tdH5'uTHH8H5lmUH=CNHU13H]HH]HuHH=
%HHH@Hx@0W@ H@0H@8HHHC@IHUHHMLBH}ȋuvHH,L%xMH=&1HtpHAD$AL$ AT$0P0H @@0AD$PCPC,H=/MH7HtHHHuHHE1IH;EuHH [A\A^A_]DUHAWAVATSH0IL%OI$HEHhHEEHeH
61LELMHHH1eHEH;"t;HxH$H9tdH5$uTHH8H5GkH=LHU1tH]HH]HuHI~H"H9tL}H5",IL}IH9tH]H5"IH="kHHH@Hx@0W@ H@0H@8HHHC@IvIWHMHLEIuLIuLH}uzHnHIIuLINL)IFH
5H9HPH5f116IGH
H9HPH5e1L=`JH=#1HHAGAO AW0P0H @@0AGPCPC,H=JHHteHHH= LLIHDH= LHIHIu LGHuH7HE1I$H;EuHH0[A\A^A_]f.@UHAWAVATSH0IL%I$HEHHEEHbH
31LELMHHH1HEH;t;HxH!H9tdH5y!4uTHAH8H5gH=HHU1tH]HH]HuHI~HqH9tL}H5aIL}IH9tH]H58IH= HHH@Hx@0W@ H@0H@8HHHC@IvIWHMHLEwIuLYIuLKH}uozHnHIIuLINL)IFH

H9HPH5b11IGH

H9HPH5jb1L=FH=1ZHHAGAO AW0P0H @@0AGPCPC,H=FHHteHH(H=|LLIHDH=\LHqIHIu LHuHHE1I$H;EuHH0[A\A^A_].f.@UHAWAVATSH0IL%oI$HEHHEEH_H
/01LELMHHH1HEH;Bt;HxHH9tdH5	uTHH8H5gdH=>EHU1tH]HH]HuHI~HH9tL}H5LIL}IH9tH]H5#IH=HHH@Hx@0W@ H@0H@8HHHC@IvIWHMHLEIuLIuLH}uzHnHIIuLINL)IFH
U
H9HPH5._11VIGH
!
H9HPH5^1$L=CH=!1HHAGAO AW0P0H @@0AGPCPC,H=7CH?HteHHH=LL!IHDH=LHIHIu LgHuHWHE1I$H;EuHH0[A\A^A_]f.@UHAWAVATSH0IL%I$HEH	HEEH[H
,1LELMHHH1HEH;t;HxHH9tdH5TuTHaH8H5`:H=AHU1tH]HH]HuH<I~HH9tL}H5IL}IH9tH]H5XIH=@HHH@Hx@0W@ H@0H@8HHHC@IvIWHMHLEIuLyIuLkH}uzHnHIIuL7INL)IFH
H9HPH5[11IGH
H9HPH5[1L=@H=1zHHAGAO AW0P0H @@0AGPCPC,H=?HHteHHHH=LLIHDH=|LHIHIu LHuHHE1I$H;EuHH0[A\A^A_]Nf.@UHAWAVATSH0IL%I$HEHHEEH>XH
)1LELMHHH1HEH;bt;HxH5H9tdH5)uTHH8H5]H=^>HU13tH]HH]HuHI~H!H9tL}H5lIL}IH9tH]H5CIH=HHH@Hx@0W@ H@0H@8HHHC@IvIWHMHLEWIuL	IuLH}uzHnHIIuLINL)IFH
uH9HPH5NX11vIGH
AH9HPH5X1DL=<H=A1
HHAGAO AW0P0H @@0AGPCPC,H=W<H_HteHHH=,LLAIHDH=LH!IHIu LHuHwHE1I$H;EuHH0[A\A^A_]f.@UHAWAVATSH0IL%I$HEH8HEEHTH
?&1LELMHHH15HEH;t;HxHH9tdH5tuTHH8H5ZZH=:HU1tH]HH]HuH\I~HH9tL}H5IL}IH9tH]H5xIH=`;HHH@Hx@0W@ H@0H@8HHHC@IvIWHMHLEIuLIuLH}uzHnHIIuLWINL)IFH
H9HPH5T11IGH
H9HPH5T1L=09H=1HHAGAO AW0P0H @@0AGPCPC,H=8HHteHHhH=LLIHDH=LHIHIu LHuHHE1I$H;EuHH0[A\A^A_]nf.@UHAWAVATSH0IL%I$HEHHEEH^QH
"1LELMHHH1HEH;t;HxHUH9tdH5IuTHH8H5VH=~7HU1StH]HH]HuHI~HAH9tL}H51IL}IH9tH]H5cIH=
HHH@Hx@0W@ H@0H@8HHHC@IvIWHMHLEIuL)IuLH}u?zHnHIIuLINL)IFH
H9HPH5nQ11IGH
aH9HPH5:Q1dL=5H=a1*HHAGAO AW0P0H @@0AGPCPC,H=w5HHteHHH=LLLaIHDH=,LHAIHIu LHuHHE1I$H;EuHH0[A\A^A_]f.@UHAWAVAUATSHhIL%=I$HEHVHEHEEHEH$HrLH
1LELMHHH1G=HEH;t;HxHH9tdH5uTHH8H5)SlH=4HU1H]HH]HuHnH]CK S0)E)M)UH}H;=gt$0PH}H]I~L-v
L9tH5j
IL}IL9tH]H5A
IH=)
HHH@Hx@0W@ H@0H@8HHHC@IvIWHMLEIuLfIuLXH}u|HHaIuL$IfLAHH8H5JCIFH
H9HPH5M11L=2H=
1~HHAGAO AW0P0H @@0AGPCPC,H=1HHHHHIGu>H
H9HPH5L1
>H=qLHIHDH=QLHfIH
Iu LHuHHE1I$H;EuHHh[A\A]A^A_]!UHAWAVATSH0IL%oI$HEHHEEHJH
1LELMHHH1HEH;Bt;HxH	H9tdH5		uTHH8H5gOH=>0HU1tH]HH]HuHI~HH9tL}H5LIL}IH9tH]H5#IH=HHH@Hx@0W@ H@0H@8HHHC@IvIWHMHLEwIuLIuLH}uzHnHIIuLINL)IFH
UH9HPH5.J11VIGH
!H9HPH5I1$L=.H=!1HHAGAO AW0P0H @@0AGPCPC,H=7.H?HteHHH=LL!IHDH=LHIHIu LgHuHWHE1I$H;EuHH0[A\A^A_]f.@UHAWAVAUATSH8IL%I$HEHHEEHEH$HIH
1LELMHHH1HEH;t;HxHH9tdH5JuTHWH8H5K0H=,HU1H]HGH]HuH2I~L-L9tH]H5w	IL}IL9tH]H5NAILeI|$L9tH]H5$II$H=HHH@Hx@0W@ H@0H@8HHHC@IvIWIL$LEILMIII$H}uRHL%gHBIFsH
H9HPH5F11-III$1L%IG5H
`H9HPH59F1c2ID$aH
-H9HPH5F10^L3IL!I$LL%]L=N*H=1H5HAGAO AW0P0H @@0AGPCPC,H=*H
HHFH9H=LHIHYH=LHIH_ILnL%IbLI$ZLMH=TLHiIH+IuLIL%u LHuHHE1I$H;EuHH8[A\A]A^A_]f.DUHHu	H`H7H]fUHHu	H0HH]fUHHu	HHH]fUHHCu	HHH]fUHHsu	HHwH]fUHH#u	HpHGH]fUHH#u	H@HH]fUHH#u	HHH]fUHAWAVATSH IL%I$HEHHEH2FH
1LEHHH1<HEH;t;HxHH9t`H5t/uPH<H8H5EH=&HU1~LuMtCLuIuLIHuHLt	HHHH;&H=1HtjICK S0P0H @@0CPAFPAF,H=%LHtHTHyGIuLfHE1I$H;EuHH [A\A^A_]f.UHAWAVATSH IL%I$HEH(HEHrDH
1LEHHH10<HEH;t;HxHH9t`H5ouPH|H8H5DUH=$HU1LuMtCLuIuL[IHuHLGt	H$H;HH{$H=1HtjICK S0P0H @@0CPAFPAF,H=8$L@HtHTHGIuLHE1I$H;EuHH [A\A^A_]
f.UHSPHHHt1H[HH[]-f.UHHH]UHHH]UHAVSH=b=HHtOHCLsC0WC HHHHC@HCH
(C0L1VHC LVH[A^]f.@UHAWAVSHIL=qIHEEH=Ht[HH@Hx@0W@ H@0H@8HHHC@IHUL8EtHuH1IH;EuHH[A^A_]qUHAWAVSHIL=IHEEH=Ht[HH@Hx@0W@ H@0H@8HHHC@IHULEtHuHT1IH;EuHH[A^A_]UHAWAVATSH IL=IHEH)HEEHl@H
1LEHHH1*HEH;t;HxHH9tdH5iuTHvH8H5@OUH= HU13H]HH]HuHQH=HHH@Hx@0W@ H@0H@8HHHC@IHUHHML2H}ȋuHHL% H=1HtpHAD$AL$ AT$0P0H @@0AD$PCPC,H=HHtHHPHuH=HE1IH;EuHH [A\A^A_]DUHAWAVATSH IL=IHEH	HEEHL>H
1LEHHH1
HEH;t;HxHH9tdH5IuTHVH8H5=/UH=HU13H]HH]HuH1H=eHHH@Hx@0W@ H@0H@8HHHC@IHUHHML"H}ȋuHHL%H=1bHtpHAD$AL$ AT$0P0H @@0AD$PCPC,H=HHtHH0HuHHE1IH;EuHH [A\A^A_]DUHAWAVATSH IL%I$HEHHEH2<H
1LEHHH1/HEH;t;HxHH9t`H5t/uPH<H8H5;H=HU1~LuMt6LuIuLIHuHLgHHHHH=1HtjICK S0P0H @@0CPAFPAF,H=L
HtHaHTIuLsHE1I$H;EuHH [A\A^A_]f.UHAWAVATSH IL%I$HEH8HEH:H
61LEHHH1@HEH;t;HxHH9tdH5uTHH8H5":eDH=HU1"H]HH]HuHgIHEȋPPH}LHx)IL}HǾHHt3C  uH{HHK0HHH@HELLHH}L=;H=1HtlHAGAO AW0P0H @@0AGPCPC,H=HHtHHwHuHdHE1I$H;EuHH [A\A^A_]f.UHAWAVATSH IL%I$HEH(HEH2H
61LELMHHH1,HEH;t;HxHH9tdH5kuTHxH8H58QiH=HU1GH]HbH]HuHSI~HH9tL}H5IL}IH9tH]H5oIH=W2HtdHH@Hx@0W@ H@0H@8HHHC@IvIW.IuLIuLhIuL{INL)IFH
)H9HPH5311*IGH
H9HPH521L=TH=1HHAGAO AW0P0H @@0AGPCPC,H=HHteH/H茿"H=LLIHBDH=LHխIHKIu L;HuH+HE1I$H;EuHH [A\A^A_]fUHAWAVATSH IL%I$HEHHEH/H
&1LELMHHH1HEH;t;HxHH9tdH5;uTHHH8H54!iH=HU1芿GH]HbH]HuH#I~HxH9tL}H5hIL}IH9tH]H5?IH='HtdHH@Hx@0W@ H@0H@8HHHC@IvIWIuLpIuL^hIuLKINL)IFH
H9HPH5/11IGH
H9HPH5/1ȼL=$H=1莽HHAGAO AW0P0H @@0AGPCPC,H=HHteH/H\"H=LLŪIHBDH=LH襪IHKIu LHuHHE1I$H;EuHH [A\A^A_]bfUHAWAVATSH0IL%I$HEHHEEH^,H
1LELMHHH1žHEH;t;HxHUH9tdH5IuTHH8H51H=~HU1SlH]HH]HuHI~HAH9tL}H51茽IL}IH9tH]H5cIH=˽HHH@Hx@0W@ H@0H@8HHHC@IvIWHMIuL1IuL#H}uGzHnHIIuLINL)IFH
H9HPH5v,11螹IGH
iH9HPH5B,1lL=H=i12HHAGAO AW0P0H @@0AGPCPC,H=H臺HteH
HH=TLLiIHDH=4LHIIH&Iu L诸HuH蟸HE1I$H;EuHH0[A\A^A_]fDUHAWAVATSH IL%OI$HEHhHEH)H
1LELMHHH1ltHEH;)t;HxHH9tdH5諺uTHH8H5N.葹*H=%HU1H]H#H]HuH蓷I~HH9tL}H53IL}IH9tH]H5
II~Iwu	H.HHItIiLIULHIFH
H9HPH5)11詶IGH
tH9HPH5M)1wL=
H=t1=HHAGAO AW0P0H @@0AGPCPC,H=
H蒷HteHnHaH=_LLtIHDH=?LHTIHIu L躵HuH誵HE1I$H;EuHH [A\A^A_]UHAWAVATSH0IL%_I$HEHxHEEH&H
1LELMHHH1uHEH;2t;HxHH9tdH5贷uTHH8H5W+蚶H=.HU1tH]HH]HuH蜴I~HH9tL}H5<IL}IH9tH]H5IH={HHH@Hx@0W@ H@0H@8HHHC@IvIWHMHLE觻IuLٳIuL˳H}uzHnHIIuL藳INL)IFH
EH9HPH5&11FIGH
H9HPH5%1L=p
H=1ڳHHAGAO AW0P0H @@0AGPCPC,H='
H/HteHH訲H=LLIHDH=LHIHIu LWHuHGHE1I$H;EuHH0[A\A^A_]讳f.@UHAWAVATSH0IL%I$HEHHEEH"H
1LELMHHH1HEH;t;HxHH9tdH5DuTHQH8H5'*H=HU1蓲tH]HH]HuH,I~HH9tL}H5q̳IL}IH9tH]H5H裳IH=0HHH@Hx@0W@ H@0H@8HHHC@IvIWHMHLEGIuLiIuL[H}uzHnHIIuL'INL)IFH
H9HPH5"11֯IGH
H9HPH5z"1褯L=H=1jHHAGAO AW0P0H @@0AGPCPC,H=H述HteHH8H=LL衝IHDH=lLH聝IHIu LHuH׮HE1I$H;EuHH0[A\A^A_]>f.@UHAWAVATSH0IL%I$HEHHEEH.H
_1LELMHHH1蕱HEH;Rt;HxH%H9tdH5԰uTHH8H5w$躯H=NHU1#tH]HH]HuH輭I~HH9tL}H5\IL}IH9tH]H53IH=蛰HHH@Hx@0W@ H@0H@8HHHC@IvIWHMHLEIuLIuLH}uzHnHIIuL跬INL)IFH
eH9HPH5>11fIGH
1H9HPH5
14L=H=11HHAGAO AW0P0H @@0AGPCPC,H=GHOHteHHȫH=LL1IHDH=LHIHIu LwHuHgHE1I$H;EuHH0[A\A^A_]άf.@UHAWAVATSH0IL%I$HEH(HEEHH
1LELMHHH1%HEH;t;HxHH9tdH5duTHqH8H5!JH=HU1賫tH]HH]HuHLI~HH9tL}H5IL}IH9tH]H5hìIH=P+HHH@Hx@0W@ H@0H@8HHHC@IvIWHMHLE臱IuL艩IuL{H}u蟖zHnHIIuLGINL)IFH
H9HPH511IGH
H9HPH51ĨL= H=1芩HHAGAO AW0P0H @@0AGPCPC,H=HߩHteHHXH=LLIHDH=LH衖IHIu LHuHHE1I$H;EuHH0[A\A^A_]^f.@UHAWAVATSH0IL%I$HEHHEEHNH
1LELMHHH1赪HEH;rt;HxHEH9tdH59uTHH8H5ڨH=nHU1CtH]HH]HuHܦI~H1H9tL}H5!|IL}IH9tH]H5SIH=軩HHH@Hx@0W@ H@0H@8HHHC@IvIWHMHLE'IuLIuLH}u/zHnHIIuLץINL)IFH
H9HPH5^11膥IGH
QH9HPH5*1TL=H=Q1HHAGAO AW0P0H @@0AGPCPC,H=gHoHteHHH=<LLQIHDH=LH1IHIu L藤HuH臤HE1I$H;EuHH0[A\A^A_]f.@UHAWAVATSH0IL%/I$HEHHHEEHH
o1LELMHHH1EHEH;t;HxHH9tdH5脦uTHH8H5'jH=HU1ӤtH]HH]HuHlI~HH9tL}H5IL}IH9tH]H5IH=pKHHH@Hx@0W@ H@0H@8HHHC@IvIWHMHLEǪIuL詢IuL蛢H}u迏zHnHIIuLgINL)IFH
H9HPH511IGH
H9HPH51L=@H=1誢HHAGAO AW0P0H @@0AGPCPC,H=HHteHHxH=LLIHDH=LHIHIu L'HuHHE1I$H;EuHH0[A\A^A_]~f.@UHAWAVAUATSHIIL-IEHEH=HU1H]HtaHuH艠L%LLHIM9t.Mt)LL11xHILCLL%H=(1HtpHAD$AL$ AT$0P0H @@0AD$PCPC,H=>HFHtH0H迟#HuH謟1IEH;EuHH[A\A]A^A_]fUHAWAVAUATSHHHH萢HIH|脧IHwLH=F
<HRIH=B1HE11躢H3HH=LHLE11ILH}HHU)E1)L	t#L]HH=IHD蔞	H{YIHI|$ID$L萦L胟HHEH~HEHžHHH}
E1HEJ<(HNHJDIL9muE1L1E1MtIuL螝HtHuH苝MtIuLxLH[A\A]A^A_]1HE1	HH_ƞLlE1H}tUHAWAVAUATSH(HL-
IEHEEHH蚞t&H^HH8H54H=)HU1LuMIuL蛜H=ϟHtwIH@L`@0W@ H@0H@8H@HIG@HULHYLIE1HJH8H5eӝ1IEH;EHH([A\A]A^A_]L=BH=1謜HtIAGAO AW0P0H @@0AGPAFPAF,H=LHEHHxIuLeHLH L IG LLًIIuL(MLHILHIǿ
jHHHHLHEIuLɚHuH軚L}MtfLMLIIuL茚MHIĿLH1HML}1I(L3E1L螢HHLHHEIuLLHIIuLיHLuuHř1MtGMtBLL1gHMIu:0E1E1E1ML}1IuLwMMtIuLaMGI=LF01IušfUHHH]UHAWAVAUATSHIIHHHEHEEH=BHU1|LmMtcIEuL跘H5x	E1HUHML1+CH}HGHOH8H5(HH=U1HICK S0P0H @@0CPAEPAE,H=mLuHH,HHxyH}IHxlH~@A>u:H{ZHIIHLH@AA$_DžlMAUPH}L)LPtXlufEH}HHG HH8H5")IELHH8H5谘E1E1H۴luHP>M|H^LkH]HHH}ȺH]HH}ȾUHtHHUHuHHTHHXHHpH HEUH5x(HHHHHpH HEHu	;J1HpH]H3HH}ȺH舞HH}Ⱦ耞HHH|HuIH{LHHH`H HEӖE1HAHH;EuLHĈ[A\A]A^A_]1HpH}H5Ht^HH_HH`H HEBHH8H5Hu	;1H`1HX]1H`H}H5蒝Ht%HuH!HHXH HE	1HXH}fIIHuHMLLSHtVIH胜HxlHuLHtuHxLH1IEHűHرH8H5yqvHH8H5YE1E1HHpHH8H5	*E1E1HU(E1E1HFHpH`A蹔E1E1HXHHpH`tHuHH`HpHtHuILHHH̒RfUHAWAVSPHnTHt+IHsH=H1QIIu
L耒E1LH[A^A_]f.UHAWAVAUATSHXIIL-:IEHEHEEH=HU1YL}MIuLH5d1HUL1oH}HHEE(E(\EHEHEHGH`H8H5x9^HH=f1/H@ICK S0P0H @@0CPAGPAG,H=~L膒HHHLL膁H	IHH=%HHH@HHHHQLHI9H{C0WC HC0HC8HDHC@HuIIOHULEL辖uLs}t+Hu#H	IuL&HJ1IEH;EuHHX[A\A]A^A_]胑UHAWAVATSHIL=ϭIHEH=)HU1H]Ht#HuH蟏LH޺/L%H=|1EHtpHAD$AL$ AT$0P0H @@0AD$PCPC,H=H蚐HtHnHaHuH1IH;Mu
H[A\A^A_]sUHAWAVATSHIL=IHEH=HU1H]Ht#HuH菎LH޺L%H=l15HtpHAD$AL$ AT$0P0H @@0AD$PCPC,H=H芏HtHnHaHuH1IH;Mu
H[A\A^A_]cUHAWAVATSHIL=IHEH=	HU1ގH]Ht#HuHLH޺~L%H=\1%HtpHAD$AL$ AT$0P0H @@0AD$PCPC,H=rHzHtHnHaHuH1IH;Mu
H[A\A^A_]SUHSPsHt>HH赑HEu
H蒌Ef.uz|EHt	1H[]WH[]雕f.UHAVSHHGLp HH肕tHC M4L[A^]
f.UHAVSHGu!HͩH8H5覍A|HH5QE1H9fH9F#H9AH9<H97H92H9-
H9(H”H5H諔AH5H莔AH5HqAH5HTAH5H7AtnH5vHAtUH5eHA6A.A&AAAAAD[A^]UHHH]UHAVSH=mHHtOHCLsC0WC HHHHC@HCH(C0L1膎HC L膎H[A^]f.@UHAWAVAUATSHUAHDo ExHDk A u
HCHHEHK0HCHA@HDHMLcI|$HIAAEHE1HUf.蛒HUMgtxMMAtAu'B|:B|zvB|wH
21U1HUL99I1*f.fH
tTHI9AtA"<<Zv
f<v裑HUЅuML9LufDDAIHI9AtAuD<}u D<Z}uD<}tA_tAG~vAwD H5ť<uDHUЉ xDx"0HUaAHEH[A\A]A^A_]HEf.@UHAWAVAUATSHHIIL%
I$HEEH\H9t
10H=F!HHHCLcC0WC HC0HC8HCHHC@LmLjHMLLL(uAtHULúuLsL%GtHuH?1I$H;EuHHH[A\A]A^A_]謇f.fUHAWAVAUATSH(HL-IEHE蘏HugH{HGts茏Ht^HsbH+EELs(IFHusHH8H5.HH8H5cHuHoH8H5G1IEH;EHH([A\A]A^A_]H5DLtOH5LԎtUH5DLtlHH8H5LAHt1I_H}DInfE1E1FH}DNaN-蓇HBIH}،DsNaNDAE1Ls H
rIFHuuH9H5IL複IHLeL}L踍ILxL詌HHtBHgHMHL1蹍I9HMu}u0HtLu&M~aE1LuMIM9LutHK|HGMI"HH
L}t0H}ueEHH}HHM1r?LuHH8H5貄H}HuHHBI}L軂p豅HuHH8H5$@UHSPHH@HtHusH{HHtHu_HCHH[]@f.fUHAWAVATSHHL%I$HE؋W,H
LPLyys#S(H
LLyˋyrHH8H5考1=HcC4H
HHK HsLCDKP[8HH=1AWAVSH I$H;MuH[A\A^A_]UHAVSHIHFt&H5Ht"H5HtLH[A^]IF@IFHH[A^]f.@UHAWAVSPHtTIHIHFt&H53H茊tQH5HytdLHLH[A^A_]靊HH8H57H[A^A_]IGH;t?LƸu,IGH;vtILƸu6IG0IL)1uHH8H5-oIG0IL	1[H~H8H51;UHAWAVAUATSHXIHHHEHHEHEHEHEHEHEHEHEH]LUL]L}LmLeHcH
LELMHHH¸SARASAWAUATkH0H}H;=$t&-HHWI~H$VH}H;=t!I~膄>H}H;=Üt&̃HH5I~Hӈ4H}H;=t&虃HH+I~H谈*H}H;=]tfH$H(AFPH}H;=3t1<HHHcI~H9޸EXH]H;HCH;uH	c蔀HHH8H5_H!H8H5<IUH@HXH8H5 ,HH/H8H5HHH8H5#HHIHIE1E1HL<H=|H
H9AtH9HI uYAaA	IM9uAHDHcH8H5+HCI~Ku-HؙH8H5SE1I~D"?L}1L;=
IGu%H;L%L-1AHEH~TE1E1LLH=Ӱt_H
H9AtH9HI uFAuRA	IL;muAu<ILDiu.HH8H5H[H8H5d|HHH;EuOHX[A\A]A^A_]IGILuHH8H52HlH8H5\3|UHSPHH9t
10H=}}HHtbH=12{HC@Ht=H=1{HCHHt8HCH
Ht:AI Q0P HAHCHHt
1YHuHy1G@ @HK(HS@HJHHKHHACPHCXHH[]UHAWAVSPHG uHZH8H5(~IH	u_H=t@E1HĮfH;H[ tYHsLHtHxJuDsE1,|AHuHBH8H5zADH[A^A_]AUHAWAVATSHIIL%I$HEEH~HH9tH5I{IH=֦{HtkHH@Hx@0W@ H@0H@8HHHC@IwIVHM)|IuLxuL@etHuH	IuLw1I$H;Eu]HH[A\A^A_]IGu H
H9HPH5t11wH=LLfIHyDUHAWAVATSHIIL%\I$HEEH~HH9tH5yIH=azHtkHH@Hx@0W@ H@0H@8HHHC@IwIVHMI|IuLvuLctHuH	IuLv1I$H;Eu]HH[A\A^A_]IGu H
KH9HPH5$11LvH=LLdIHwDUHAWAVATSHIIL%I$HEEH~HZH9tH5NxIH=6yHtkHH@Hx@0W@ H@0H@8HHHC@IwIVHM	{IuL{uuLbtHuH	IuLSu1I$H;Eu]HH[A\A^A_]IGu H
H9HPH511tH=cLLxcIHuvDUHAWAVATSHIIL%I$HEEH~H
H9tH5YwIH=wHtkHH@Hx@0W@ H@0H@8HHHC@IwIVHMyIuL+tuLPatHuH	IuLt1I$H;Eu]HH[A\A^A_]IGu H
H9HPH511sH=LL(bIH%uDUHAWAVATSHIIL%lI$HEEH~HH9tH5	vIH=qvHtkHH@Hx@0W@ H@0H@8HHHC@IwIVHMvIuLruL`tHuH	IuLr1I$H;Eu]HH[A\A^A_]IGu H
[H9HPH5411\rH=àLL`IHsDUHAWAVATSHIIL%I$HEEH~HjH9tH5^tIH=F!uHtkHH@Hx@0W@ H@0H@8HHHC@IwIVHM9wIuLquL^tHuH	IuLcq1I$H;Eu]HH[A\A^A_]IGu H
H9HPH511qH=sLL_IHrDUHAWAVATSHIIL%̎I$HEEH~HH9tH5isIH=sHtkHH@Hx@0W@ H@0H@8HHHC@IwIVHMuIuL;puL`]tHuH	IuLp1I$H;Eu]HH[A\A^A_]IGu H
H9HPH511oH=#LL8^IH5qDUHAWAVATSHIIL%|I$HEEH~HʝH9tH5rIH=rHtkHH@Hx@0W@ H@0H@8HHHC@IwIVHMtIuLnuL\tHuH	IuLn1I$H;Eu]HH[A\A^A_]IGu H
kH9HPH5D11lnH=ӜLL\IHoDUHAWAVATSHIIL%,I$HEEH~HzH9tH5npIH=V1qHtkHH@Hx@0W@ H@0H@8HHHC@IwIVHMqIuLmuLZtHuH	IuLsm1I$H;Eu]HH[A\A^A_]IGu H
H9HPH511mH=LL[IHnDUHAWAVATSHIIL%܊I$HEEH~H*H9tH5yoIH=oHtkHH@Hx@0W@ H@0H@8HHHC@IwIVHM9qIuLKluLpYtHuH	IuL#l1I$H;Eu]HH[A\A^A_]IGu H
ˉH9HPH511kH=3LLHZIHEmDUHAWAVATSHIIL%I$HEEH~HڙH9tH5Ι)nIH=nHtkHH@Hx@0W@ H@0H@8HHHC@IwIVHMpIuLjuL XtHuH	IuLj1I$H;Eu]HH[A\A^A_]IGu H
{H9HPH5T11|jH=LLXIHkDUHAWAVATSHIIL%<I$HEEH~HH9tH5~lIH=fAmHtkHH@Hx@0W@ H@0H@8HHHC@IwIVHMoIuLiuLVtHuH	IuLi1I$H;Eu]HH[A\A^A_]IGu H
+H9HPH511,iH=LLWIHjDUHAWAVAUATSH(HIL-IMHMEH5X1HUHMH1XqL}IHH9tH5`kILeI|$H9tH5ߖ:kI$H=ƖkHHH@Hx@0W@ H@0H@8HHHC@IwIT$INLEkII$uL UHHIuLgI$LIGuoH
yH9HPH5R11zgID$u^H
HH9HPH5!1Kg^LQgI$KL>g>H=LLUIH,H=rLLUIHIuLf1IEH;EuHH([A\A]A^A_]Zhf.UHAWAVAUATSH(HIL-IMHMEH51HUHMH1oL}IHH9tH5iILeI|$H9tH5hI$H=vQiHHH@Hx@0W@ H@0H@8HHHC@IwIT$INLEkII$uLRHHIuLxeI$LIGuoH
)H9HPH511*eID$u^H
H9HPH51d^LeI$KLd>H=BLLWSIH,H="LL7SIHIuLd1IEH;EuHH([A\A]A^A_]
ff.UHAWAVAUATSH(HIL-JIMHMEH51HUHMH1lL}IHqH9tH5efILeI|$H9tH5?fI$H=&gHHH@Hx@0W@ H@0H@8HHHC@IwIT$INLEiII$uLPHHIuL(cI$LIGuoH
ـH9HPH511bID$u^H
H9HPH51b^LbI$KLb>H=LLQIH,H=ҐLLPIHIuLMb1IEH;EuHH([A\A]A^A_]cf.UHAWAVAUATSH(HIL-IMHMEH5h1HUHMH1hjL}IH!H9tH5pdILeI|$H9tH5JdI$H=֏dHHH@Hx@0W@ H@0H@8HHHC@IwIT$INLEpeII$uL0NHHIuL`I$LIGuoH
~H9HPH5b11`ID$u^H
X~H9HPH511[`^La`I$KLN`>H=LLNIH,H=LLNIHIuL_1IEH;EuHH([A\A]A^A_]jaf.UHAWAVAUATSH(HIL-}IMHMEH51HUHMH1hL}IHэH9tH5ō bILeI|$H9tH5aI$H=abHHH@Hx@0W@ H@0H@8HHHC@IwIT$INLEcII$uLKHHIuL^I$LIGuoH
9|H9HPH511:^ID$u^H
|H9HPH51^^L^I$KL]>H=RLLgLIH,H=2LLGLIHIuL]1IEH;EuHH([A\A]A^A_]_f.UHAWAVAUATSH(HIL5Z{IHMEH51HUHMH1eL}IHH9tH5v_CILeI|$H9tH5P_QI$LH=4`HIH@@0W@ H@0H@8HHIE@H=_H$ILHH@Hp@0W@ H@0H@8HHIF@IWIL$LCLM_IuL&\I$uL\uH<IIuL[IEuL[1II$_IGH
yH9HPH5_11[(ID$H
QyH9HPH5*1T[IL5LyI$IEH=LLIIHH=LL1^HIuLZIEuLZL5xiLZI$uXLNH=LL-IIHIu/L%LZI$@L{ZIEuLlZ1IH;EuHH([A\A]A^A_][f.UHAWAVAUATSH(HIL-xIMHMEH51HUHMH1bL}IHAH9tH55\ILeI|$H9tH5j\I$H=\HHH@Hx@0W@ H@0H@8HHHC@IwIT$INLE`_II$uLPFHHIuLXI$LIGuoH
vH9HPH511XID$u^H
xvH9HPH5Q1{X^LXI$KLnX>H=†LLFIH,H=LLFIHIuLX1IEH;EuHH([A\A]A^A_]Yf.UHAWAVAUATSH(HIL-uIMHMEH581HUHMH18`L}IHH9tH5@ZILeI|$H9tH5ZI$H=ZHHH@Hx@0W@ H@0H@8HHHC@IwIT$INLE ]II$uLDHHIuLVI$LIGuoH
YtH9HPH5211ZVID$u^H
(tH9HPH51+V^L1VI$KLV>H=rLLDIH,H=RLLgDIHIuLU1IEH;EuHH([A\A]A^A_]:Wf.UHAWAVAUATSH(HIL-zsIMHMEH51HUHMH1]L}IHH9tH5WILeI|$H9tH5oWI$H=V1XHHH@Hx@0W@ H@0H@8HHHC@IwIT$INLEZII$uLAHHIuLXTI$LIGuoH
	rH9HPH511
TID$u^H
qH9HPH51S^LSI$KLS>H="LL7BIH,H=LLBIHIuL}S1IEH;EuHH([A\A]A^A_]Tf.UHAWAVAUATSH(HIL-*qIMHMEH51HUHMH1[L}IHQH9tH5EUILeI|$H9tH5zUI$H=UHHH@Hx@0W@ H@0H@8HHHC@IwIT$INLEXII$uL`?HHIuLRI$LIGuoH
oH9HPH511QID$u^H
oH9HPH5a1Q^LQI$KL~Q>H=LL?IH,H=LL?IHIuL-Q1IEH;EuHH([A\A]A^A_]Rf.UHAWAVAUATSH(HIL-nIMHMEH5H1HUHMH1HYL}IHH9tH5~PSILeI|$H9tH5~*SI$H=~SHHH@Hx@0W@ H@0H@8HHHC@IwIT$INLE0RII$uL=HHIuLOI$LIGuoH
imH9HPH5B11jOID$u^H
8mH9HPH51;O^LAOI$KL.O>H=}LL=IH,H=b}LLw=IHIuLN1IEH;EuHH([A\A]A^A_]JPf.UHAWAVAUATSH(HIL-lIMHMEH51HUHMH1VL}IH|H9tH5|QILeI|$H9tH5|PI$H=f|AQHHH@Hx@0W@ H@0H@8HHHC@IwIT$INLETII$uL:HHIuLhMI$LIGuoH
kH9HPH511MID$u^H
jH9HPH51L^LLI$KLL>H=2{LLG;IH,H={LL';IHIuLL1IEH;EuHH([A\A]A^A_]Mf.UHAWAVAUATSH(HIL-:jIMHMEH51HUHMH1TL}IHazH9tH5UzNILeI|$H9tH5/zNI$H=zNHHH@Hx@0W@ H@0H@8HHHC@IwIT$INLEQII$uLp8HHIuLKI$LIGuoH
hH9HPH511JID$u^H
hH9HPH5q1J^LJI$KLJ>H=xLL8IH,H=xLL8IHIuL=J1IEH;EuHH([A\A]A^A_]Kf.UHAWAVAUATSH(HIL-gIMHMEH5X1HUHMH1XRL}IHxH9tH5x`LILeI|$H9tH5w:LI$H=wLHHH@Hx@0W@ H@0H@8HHHC@IwIT$INLEPKII$uL 6HHIuLHI$LIGuoH
yfH9HPH5R11zHID$u^H
HfH9HPH5!1KH^LQHI$KL>H>H=vLL6IH,H=rvLL6IHIuLG1IEH;EuHH([A\A]A^A_]ZIf.UHAWAVAUATSH(HIL-eIMHMEH51HUHMH1PL}IHuH9tH5uJILeI|$H9tH5uII$H=vuQJHHH@Hx@0W@ H@0H@8HHHC@IwIT$INLE@MII$uL3HHIuLxFI$LIGuoH
)dH9HPH511*FID$u^H
cH9HPH5Ѹ1E^LFI$KLE>H=BtLLW4IH,H="tLL74IHIuLE1IEH;EuHH([A\A]A^A_]
Gf.UHAWAVAUATSH(HIL-JcIMHMEH51HUHMH1ML}IHqsH9tH5esGILeI|$H9tH5?sGI$H=&sHHHH@Hx@0W@ H@0H@8HHHC@IwIT$INLEHII$uL1HHIuL(DI$LIGuoH
aH9HPH511CID$u^H
aH9HPH51C^LCI$KLC>H=qLL2IH,H=qLL1IHIuLMC1IEH;EuHH([A\A]A^A_]Df.UHAWAVAUATSH8IL-`IEHEHaHEEHEH$HH
1LELMHHH1FLeI|$HqH9tH5pRE?I$L}IH9tH5p,EJILmL;-u`t$I}H9tH5pDIEE1H=p`EHHH@Hx@0W@ H@0H@8HHHC@It$IWMIMMFLMCIEuLAI$IL-_uLAuL.HHI$#I+M/9ID$uzH
_H9HPH511AWIGH
^H9HPH51@INLEDI$(L@H=oLL1/IH IEH
`^H9HPH591c@H=nLL.IHI$LvL8@IL&@MtIEuL@1L-^DH=`nLLu.IHI$uL?IL-]uL?1IEH;EuHH8[A\A]A^A_]2AfUHAWAVAUATSH(HIL-z]IMHMEH51HUHMLEH1GL}IHmH9tH5mAILeI|$H9tH5kmA:I$LmI}H9tH5EmAGIEH=,mBHHH@Hx@0W@ H@0H@8HHHC@IwIT$IMMFLMEI	I$IEuLw+HL-,\HIGH
[H9HPH511=II$IE$1L-[gID$H
[H9HPH5\1=IEH
Q[H9HPH5*1T=LW=I$LD=IEL1=L-[H=ykLL+IHH=VkLLk+IHIuzLpL<I$L<IEL<H=jLL+IHIuLu<I$L-aZuL_<1IEH;EuHH([A\A]A^A_]=f.fUHHFH]
=f.UHHFH]<f.UHAVSH=Bj?HHtOHCLsC0WC HHHHC@HCH
(JC0L16@HC L6@H[A^]f.@UHSPHH~HiH9tH5i>t&HHAt	HYH/YHHXH8H5<1H[]fUHAVSHIH~HHiH9tH5<i=t5HH{vAu	L5XL5XIHuUH:KHCu!H
bXH9HPH5;E11b:H=hHL(HHuE1L[A^]f.UHAVSHIH~HhH9tH5|h<t5HH{@u	L5XL5WIHuUH9KHCu!H
WH9HPH5{E119H=	hHL(HHuE1L[A^]f.UHAVSHIH~HgH9tH5g<t5HH{;u	L5CWL5WIHuUH 9KHCu!H
VH9HPH5E118H=IgHL^'HHuE1L[A^]f.UHAVSHIH~HgH9tH5fW;t<HH{ILo?u	L5|VL5SVIHuUHY8KHCu!H
VH9HPH5E118H=fHL&HHuE1L[A^]@UHAVSHIH~HHfH9tH5<f:t5HH{>u	L5UL5UIHuUH7KHCu!H
bUH9HPH5;E11b7H=eHL%HHuE1L[A^]f.UHAVSHIH~HeH9tH5|e9t5HH{=u	L5UL5TIHuUH6KHCu!H
TH9HPH5{E116H=	eHL%HHuE1L[A^]f.UHAVSHIH~HdH9tH5d9t5HH{7u	L5CTL5TIHuUH 6KHCu!H
SH9HPH5E115H=IdHL^$HHuE1L[A^]f.UHAVSHIH~HdH9tH5cW8t<HH{IL<u	L5|SL5SSIHuUHY5KHCu!H
SH9HPH5E115H=cHL#HHuE1L[A^]@UHAVSHIH~HHcH9tH5<c7t5HH{8u	L5RL5RIHuUH4KHCu!H
bRH9HPH5;E11b4H=bHL"HHuE1L[A^]f.UHAVSHIH~HbH9tH5|b6t"HHL%IHuUH3KHCu!H
QH9HPH5E113H=bHL1"HHuE1L[A^]f.@UHSPHH~HaH9tH5a+6tHH2QH8H5P51HH[]f.DUHAWAVATSHIIL%QI$HEEH~HZaH9tH5Na5IH=6a6HtgHH@Hx@0W@ H@0H@8HHHC@IwHU9IuL2uLtHuH	IuLW21I$H;Eu]HH[A\A^A_]IGu H
OH9HPH5ؤ112H=g`LL| IHy3fUHAVSHIH~H(`H9tH5`w4tHH[A^]HCuH
kOH9HPH5D1n1H=_HLHHu1f.@UHAWAVATSHIIL%,OI$HEEH~Hz_H9tH5n_3IH=V_14HtgHH@Hx@0W@ H@0H@8HHHC@IwHU7IuL0uLtHuH	IuLw01I$H;Eu]HH[A\A^A_]IGu H
NH9HPH511 0H=^LLIH1fUHAWAVATSHIIL%MI$HEEH~H*^H9tH5^y2IH=^2HtkHH@Hx@0W@ H@0H@8HHHC@IwIVHM6IuLK/uLptHuH	IuL#/1I$H;Eu]HH[A\A^A_]IGu H
LH9HPH511.H=3]LLHIHE0DUHAWAVATSHIIL%LI$HEEH~H\H9tH5\)1IH=\1HtkHH@Hx@0W@ H@0H@8HHHC@IwIVHMY5IuL-uL tHuH	IuL-1I$H;Eu]HH[A\A^A_]IGu H
{KH9HPH5T11|-H=[LLIH.DUHAVSHIH~H[H9tH5[/t1HH{IL4IHuH-L[A^]"-HCuH
JH9HPH51,H=0[HLEHHu1[A^]fDUHAWAVATSHHIL%JI$HEH~HZH9tH5Z0/t_HHsAVPH}.IHt+Mx3L}L.HHtlC  uIH{HTH,My-1VHCucH
IH9HPH511+)HK0HHH@HELLt.H]IH}I$H;Eu2HH[A\A^A_]H=YHLHH1-fDUHAWAVATSHHIL%LII$HEH~HYH9tH5Y-t_HHsAVPH}2IHt+Mx3L}L-HHtlC  uIH{HTH*MyQ,1VHCucH
HH9HPH5j11*)HK0HHH@HELL4-HHH}I$H;Eu2HH[A\A^A_]H=XHLHH1+fDUHAWAVAUATSHHIL-
HIMHMH51HUHMH12LuI~H8XH9tH5,X,IL}IH9tH5Xb,IH=W,HtXHH@Hx@0W@ H@0H@8HHHC@IvIW0IIIIIFufH
FH9HPH511(IGuiH
FH9HPH51(iL(IukL(aH=VLLIH?Ly(Iu1L'H=VLLIHIuLB(1IEH;EuHH[A\A]A^A_])f.DUHAWAVAUATSHHIL-EIMHMH5_1HUHMH1_0LuI~HVH9tH5Vg*IL}IH9tH5UB*IH=U*HtXHH@Hx@0W@ H@0H@8HHHC@IvIW.IIIIIFufH
DH9HPH511&IGuiH
DH9HPH5a1&iL&IukL&aH=TLLIH?LY&Iu1L'H=TLLIHIuL"&1IEH;EuHH[A\A]A^A_]'f.DUHAWAVAUATSH(HIL-CIMHMEH581HUHMH18.L}IHSH9tH5S@(ILeI|$H9tH5S(I$H=S(Ht~HH@Hx@0W@ H@0H@8HHHC@IwIT$HM,II$uLHHIuL$I$LIGuoH
aBH9HPH5:11b$ID$u^H
0BH9HPH5	13$^L9$I$KL&$>H=zRLLIH,H=ZRLLoIHIuL#1IEH;EuHH([A\A]A^A_]B%fUHAWAVAUATSH(HIL-AIMHMEH51HUHMH1+L}IHQH9tH5Q&ILeI|$H9tH5Q%I$H=fQA&HHH@Hx@0W@ H@0H@8HHHC@IwIT$INLEp*II$uLHHIuLh"I$LIGuoH
@H9HPH511"ID$u^H
?H9HPH51!^L!I$KL!>H=2PLLGIH,H=PLL'IHIuL!1IEH;EuHH([A\A]A^A_]"f.UHAWAVAUATSH(HIL-:?IMHMEH51HUHMH1)L}IHaOH9tH5UO#ILeI|$H9tH5/O#I$H=O#HHH@Hx@0W@ H@0H@8HHHC@IwIT$INLE0(II$uLp
HHIuL I$LIGuoH
=H9HPH511ID$u^H
=H9HPH5q1^LI$KL>H=MLL
IH,H=MLL
IHIuL=1IEH;EuHH([A\A]A^A_] f.UHAWAVAUATSH(HIL-<IMHMEH5X1HUHMH1X'L}IHMH9tH5M`!ILeI|$H9tH5L:!I$H=L!HHH@Hx@0W@ H@0H@8HHHC@IwIT$INLE%II$uL HHIuLI$LIGuoH
y;H9HPH5R11zID$u^H
H;H9HPH5!1K^LQI$KL>>H=KLLIH,H=rKLLIHIuL1IEH;EuHH([A\A]A^A_]Zf.UHAWAVAUATSH(HIL-:IMHMEH51HUHMH1%L}IHJH9tH5JILeI|$H9tH5JI$H=vJQHHH@Hx@0W@ H@0H@8HHHC@IwIT$INLE#II$uLHHIuLxI$LIGuoH
)9H9HPH511*ID$u^H
8H9HPH5э1^LI$KL>H=BILLW	IH,H="ILL7	IHIuL1IEH;EuHH([A\A]A^A_]
f.UHAWAVAUATSHHIL-J8IMHMH51HUHMH1"SL}IHxHH9tH5lHILeI|$H9tH5FHI$IIt$v!u	H7H7HIt
I$LI$LIGuLH
?7H9HPH511@zID$u>H
7H9HPH51>H={GLLIH	,H=[GLLpIHIuL1IEH;EuHH[A\A]A^A_]CUHAWAVAUATSH(HIL-6IMHMEH51HUHMH1 L}IHFH9tH5FILeI|$H9tH5FI$H=fFAHHH@Hx@0W@ H@0H@8HHHC@IwIT$INLEII$uLHHIuLhI$LIGuoH
5H9HPH511ID$u^H
4H9HPH51^LI$KL>H=2ELLGIH,H=ELL'IHIuL1IEH;EuHH([A\A]A^A_]f.UHAWAVAUATSH(HIL-:4IMHMEH51HUHMH1L}IHaDH9tH5UDILeI|$H9tH5/DI$H=DHHH@Hx@0W@ H@0H@8HHHC@IwIT$INLEpII$uLpHHIuLI$LIGuoH
2H9HPH511ID$u^H
2H9HPH5q1^LI$KL>H=BLLIH,H=BLLIHIuL=1IEH;EuHH([A\A]A^A_]f.UHG,H2H]UHG(H1H]UHAWAVAUATSPID,E11HIH=HtBHIfH;H[ t-D{tHsLyIEunLaE1Ef(1HtGIH=HtFHH
H;H[ t0DctHsLyIuLIEtE1SIvIVIcF4H
0HMF MNEVPA^8H=AWAUSARwH IIEtIt LH[A\A]A^A_]LIuL{fUHAWAVAUATSHHIL%J0I$HMHEH5E1HUH1PLmMI}Hj@H9tH5^@?I]HUIFIcN8H)H9CLH=@HIH@Hx@0W@ H@0H@8HHIG@1EH=?Ht^IH@Hx@0W@ H@0H@8HHIG@IVHM1buL't!IuLE1LLII$H;ELH[A\A]A^A_]I}HuGgcHE.H8H5QxE1E1L11芆HoHEH=>kHt_IH@Hx@0W@ H@0H@8HHIG@IVHMHuL	tIuLE1H,EIVH=>HML	HIH;=1-tH5(-3LqEH==LLHOIHHIvHUIELIHLHIEuLHH,H8IEHPH5{E118UHAWAVSHIL=,IHEEH=<LHt4HHHIvHUuLutHuH31IH;EuHH[A^A_]DUHAWAVAUATSHIIL-+IEHEEH=<<HHH@Lx@0W@ H@0H@8HHHC@IHULLuLuIvHUL*uLtHuHM
1IEH;EuHH[A\A]A^A_]f.UHHH]
f.UHAVSHHIHt4HHL1u/H*H8H5txHHt[A^]f.UHHH]j
f.UHAVSHHIHt4HHL1u/HO*H8H5z
HHt[A^]f.UHHH]f.UHAVSHHIHt4HHL1u/H)H8H5w|X
HHt[A^]f.UHHHH
bHH]UHSPHH/Ƹt/HH1uH(H8H5vH[]f.UHHcP]RfUHSPHHHt
HsCP1-
HHuH(H8H5rTH[]UHHHc]Zf.UHAVSIH~HHt?HcIH9޸EL1u/H4(H8H5|
HHt[A^]f.DUHSPHHHtHu	H{HtHu	HH[]UHAVSIHw11iHtHuHv	IFHI^H[A^]fUHSPHw11-HtHuH:	HS'HHH[]DUHAVSHH~H9H9tH58H9C`tH9J`tH9I`tHIH=8E11	HCK S0P0H @@0KPHP@,HH=_H	IHtMu'@H:&H8H5x
(HIMtIuL6L5O&IE1L[A^]f.@UHAWAVAUATSHH%HHEH=6=HG1H!=LtH5{H\H\
\!HIDH
0H| HIuHuHMH0L8LMH@HHEHHHHHEHHPH HEH(LXLUL`L}LhLmHpHH=g|SAUATAWASARAV(  HpH
$H	H;MuH[A\A]A^A_]%DUHAWAVSPЃL=z$uwIHFH;]t" t\H貌t,fxCE1GIN	HV;
0tL=	$!IV90uL=
$NILH[A^A_]f.fUHH$H=]]UHHG1]UH	]DUHH=:H:H9pt"H8H@ uH#H8H5y
@t1]HOt	H##H:#H]f.fUHAWAVSPH@H=U:IHe:DH9ptEH8H@ uH#H8H5"yH"H8H5swH[A^A_]DxAuHKxՃu	IFD	8
AIFD!81f.UHAWAVAUATSPHGD0HeIH=9WH9L%"L-"CLD!uLHsLfxH;H[ uIuLE1LH[A\A]A^A_]UHAWAVATSHL=!IHEH=Z1HU1x	H]HtIH;EHH[A\A^A_]L%ZH=W311HtIAD$AL$ AT$0P0H @@0AD$PAFPAF,H=iZLqHtHuHLdIt1WL1HUDUHAWAVAUATSHIIL- IEHEH HEH=YHU1LeMI$uLYHxH
;S1LELL1^HEH;E HxH2H9H52HH8H5^xH-YH=11HICK S0P0H @@0CPAD$PAD$,H=XLHHHaLeH=2HtsHLuH=911Ht8AFAN AV0P0H @@0ANPHPHCLcI$#WCHuH
I$uL1IEH;EuHH[A\A]A^A_]AUHSPH#HHHHrHH[]HHH軰H5bQ%dQ@%bQh%ZQh%RQh%JQh%BQh%:Qh%2Qh%*Qhp%"Qh`%Qh	P%Qh
@%
Qh0%Qh %Ph
%Ph%Ph%Ph%Ph%Ph%Ph%Ph%Ph%Ph%Php%Ph`%PhP%Ph@%Ph0%Ph %zPh%rPh%jPh%bPh %ZPh!%RPh"%JPh#%BPh$%:Ph%%2Ph&%*Ph'p%"Ph(`%Ph)P%Ph*@%
Ph+0%Ph, %Oh-%Oh.%Oh/%Oh0%Oh1%Oh2%Oh3%Oh4%Oh5%Oh6%Oh7p%Oh8`%Oh9P%Oh:@%Oh;0%Oh< %zOh=%rOh>%jOh?%bOh@%ZOhA%ROhB%JOhC%BOhD%:OhE%2OhF%*OhGp%"OhH`%OhIP%OhJ@%
OhK0%OhL %NhM%NhN%NhO%NhP%NhQ%NhR%NhS%NhT%NhU%NhV%NhWp%NhX`%NhYP%NhZ@%Nh[0%Nh\ %zNh]%rNh^%jNh_%bNh`%ZNha%RNhb%JNhc%BNhd%:Nhe%2Nhf%*Nhgp%"Nhh`%NhiP%Nhj@%
Nhk0%Nhl %Mhm%Mhn%Mho%Mhp%Mhq%Mhr%Mhs%Mht%Mhu%Mhv%Mhwp%Mhx`%MhyP%Mhz@%Mh{0%Mh| %zMh}%rMh~%jMh%bMh%ZMh%RMh%JMh%BMh%:Mh%2Mh%*Mhp%"Mh`%MhP%Mh@%
Mh0%Mh %Lh%Lh%Lh%Lh%Lh%Lh%Lh%Lh%Lh%Lh%Lhp%Lh`%LhP%Lh@%Lh0%Lh %zLh%rLh%jLh%bLh%ZLh%RLh%JLh%BLh%:Lh%2Lh%*Lhp%"Lh`%LhP%Lh@%
Lh0%Lh %Kh%Kh%Kh%Kh%Kh%Kh%Kh%Kh%Kh%Kh%Khp%Kh`%KhP%Kh@%Kh0%Kh 7
U
c
$
-p;	oSXipx 
o
oPxk
kopo0oh` D@ @ &l6lFlVlflvlllllllllmm&m6mFmVmfmvmmmmmmmmmnn&n6nFnVnfnvnnnnnnnnnoo&o6oFoVofovooooooooopp&p6pFpVpfpvpppppppppqq&q6qFqVqfqvqqqqqqqqqrr&r6rFrVrfrvrrrrrrrrrss&s6sFsVsfsvssssssssstt&t6tFtVtftvtttttttttuu&u6uFuVufuvuuuuuuuuuvv&v6vFvVvfvvvvvvvvvvvww&w6wFwVwfwvwwwwwwwwFreeBSD clang version 11.0.1 (git@github.com:llvm/llvm-project.git llvmorg-11.0.1-0-g43ff75f2c3fe)Linker: LLD 11.0.1 (FreeBSD llvmorg-11.0.1-0-g43ff75f2c3fe-1300007)$FreeBSD$.shstrtab.note.tag.dynsym.gnu.version.gnu.version_r.gnu.hash.hash.dynstr.rela.dyn.rela.plt.rodata.eh_frame_hdr.eh_frame.text.init.fini.plt.ctors.dtors.jcr.init_array.dynamic.got.data.got.plt.bss.commentppopp+o00 :oPP(DxxJx x o
RB--p;\BXiXif2{{Tindd4|",Ok[k[l\ghhh  hij"pppp0p"

Zerion Mini Shell 1.0