%PDF- %PDF-
Mini Shell

Mini Shell

Direktori : /usr/local/lib/python3.8/lib-dynload/
Upload File :
Create Path :
Current File : //usr/local/lib/python3.8/lib-dynload/math.cpython-38.so

ELF	>@q@@8
@@@@00<a<a@a@q@qPTPT8
8
RtdPtd4U4U4UQtdpppFreeBSD
 !"0AQ]t	-FRb{,:M^k 1>LZq
":FUe}"(,27>CGMQV[_d|l:
qs
 j 0(zt(z}(zthh
T导Hllih`9=!;8L5bPX%jR"3d@>(e[+6FU	C2fBc^AJ#OWk,
SQ_Z]Y'.VIG
-$/:) M7&*01HNDTK\?<aEg4_fini_init_Jv_RegisterClasses__cxa_finalizePyArg_ParseTuplePyBool_FromLongPyErr_ClearPyErr_ExceptionMatchesPyErr_FormatPyErr_NoMemoryPyErr_OccurredPyErr_SetFromErrnoPyErr_SetStringPyExc_MemoryErrorPyExc_OverflowErrorPyExc_TypeErrorPyExc_ValueErrorPyFloat_AsDoublePyFloat_FromDoublePyFloat_TypePyInit_mathPyIter_NextPyLong_AsDoublePyLong_AsLongAndOverflowPyLong_AsLongLongAndOverflowPyLong_AsUnsignedLongLongPyLong_FromDoublePyLong_FromLongPyLong_FromUnsignedLongPyLong_FromUnsignedLongLongPyLong_TypePyMem_FreePyMem_MallocPyMem_ReallocPyModule_AddObjectPyModule_Create2PyNumber_AddPyNumber_FloorDividePyNumber_IndexPyNumber_MultiplyPyNumber_SubtractPyNumber_TrueDividePyObject_FreePyObject_GetIterPyObject_MallocPyObject_RichCompareBoolPySequence_TuplePyType_IsSubtypePyType_ReadyPy_BuildValuePy_FatalError_PyArg_CheckPositional_PyArg_UnpackKeywords_PyLong_Copy_PyLong_Frexp_PyLong_GCD_PyLong_Lshift_PyLong_NumBits_PyLong_One_PyLong_Rshift_PyLong_Sign_PyObject_LookupSpecial_PyObject_MakeTpCall_Py_CheckFunctionResult_Py_Dealloc_Py_NoneStruct_Py_dg_infinity_Py_dg_stdnan_Py_log1p__error__isfinite__isinf__stack_chk_fail__stack_chk_guardacosacoshasinasinhatanatan2atanhceilcopysigncoscosherferfcexpexpm1fabsfloorfmodfrexpldexploglog10log2memcpymodfpowroundsinsinhsqrttantanhlog1plibm.so.5FBSD_1.0FBSD_1.2libc.so.7/usr/local/lib:/usr/local/liblibthr.so.3qSSSTT.UTp3  Q(r83@RHrX 4`?Thrxp4#Sr4Ss5S0s`5T`s5)Ss@6 R( t86@DTHPtXp7`uQhptx7St8TtP8Syp9Sz9sR{9 .S({8 :@QH{X:`Sh|x;S p;S;zQp@<<S@=Q0= Q(8=@SH`X>`4Shx?S0@BwRBSЖ C8Q0CSC T(8@D@RH0XD`Thpx0EQERFRУ@FQFQG >Q(Ш8PG@SHXpH`Qh xHS@I}R`@IRIHQIQpPJ R(8K@SHX MRqT4SSQP(
` X8?FGHIJKMNOPQ0T8U@VHWpbxcdefhk`hp!x @A;=<>	1,*D(EBR 
(S0-8C@WHP$X`hpx%6XY/)^aT`bP052: 7(098@#H"P+X&`Zh[px'_.3L4\]g@@-DT!	@7@@@CQBa@&.>cܥL@?E@п-DT!	E#B;?i@HP?E-DT!?iW
@E@9RFߑ?-DT!?!3|@-DT!@WLup#BA2 BiA뇇BA@?tAA补ApqA&"BA'
@?LPEAAX@@R;{`Zj@P@]v}A{DA*_{AqqiAWXZYtZYVYYYY mmmm~mThis module provides access to the mathematical functions
defined by the C standard.acos($module, x, /)
--

Return the arc cosine (measured in radians) of x.acosh($module, x, /)
--

Return the inverse hyperbolic cosine of x.asin($module, x, /)
--

Return the arc sine (measured in radians) of x.asinh($module, x, /)
--

Return the inverse hyperbolic sine of x.atan($module, x, /)
--

Return the arc tangent (measured in radians) of x.atan2($module, y, x, /)
--

Return the arc tangent (measured in radians) of y/x.

Unlike atan(y/x), the signs of both x and y are considered.atanh($module, x, /)
--

Return the inverse hyperbolic tangent of x.ceil($module, x, /)
--

Return the ceiling of x as an Integral.

This is the smallest integer >= x.copysign($module, x, y, /)
--

Return a float with the magnitude (absolute value) of x but the sign of y.

On platforms that support signed zeros, copysign(1.0, -0.0)
returns -1.0.
cos($module, x, /)
--

Return the cosine of x (measured in radians).cosh($module, x, /)
--

Return the hyperbolic cosine of x.degrees($module, x, /)
--

Convert angle x from radians to degrees.dist($module, p, q, /)
--

Return the Euclidean distance between two points p and q.

The points should be specified as sequences (or iterables) of
coordinates.  Both inputs must have the same dimension.

Roughly equivalent to:
    sqrt(sum((px - qx) ** 2.0 for px, qx in zip(p, q)))erf($module, x, /)
--

Error function at x.erfc($module, x, /)
--

Complementary error function at x.exp($module, x, /)
--

Return e raised to the power of x.expm1($module, x, /)
--

Return exp(x)-1.

This function avoids the loss of precision involved in the direct evaluation of exp(x)-1 for small x.fabs($module, x, /)
--

Return the absolute value of the float x.factorial($module, x, /)
--

Find x!.

Raise a ValueError if x is negative or non-integral.floor($module, x, /)
--

Return the floor of x as an Integral.

This is the largest integer <= x.fmod($module, x, y, /)
--

Return fmod(x, y), according to platform C.

x % y may differ.frexp($module, x, /)
--

Return the mantissa and exponent of x, as pair (m, e).

m is a float and e is an int, such that x = m * 2.**e.
If x is 0, m and e are both 0.  Else 0.5 <= abs(m) < 1.0.fsum($module, seq, /)
--

Return an accurate floating point sum of values in the iterable seq.

Assumes IEEE-754 floating point arithmetic.gamma($module, x, /)
--

Gamma function at x.gcd($module, x, y, /)
--

greatest common divisor of x and yhypot(*coordinates) -> value

Multidimensional Euclidean distance from the origin to a point.

Roughly equivalent to:
    sqrt(sum(x**2 for x in coordinates))

For a two dimensional point (x, y), gives the hypotenuse
using the Pythagorean theorem:  sqrt(x*x + y*y).

For example, the hypotenuse of a 3/4/5 right triangle is:

    >>> hypot(3.0, 4.0)
    5.0
isclose($module, /, a, b, *, rel_tol=1e-09, abs_tol=0.0)
--

Determine whether two floating point numbers are close in value.

  rel_tol
    maximum difference for being considered "close", relative to the
    magnitude of the input values
  abs_tol
    maximum difference for being considered "close", regardless of the
    magnitude of the input values

Return True if a is close in value to b, and False otherwise.

For the values to be considered close, the difference between them
must be smaller than at least one of the tolerances.

-inf, inf and NaN behave similarly to the IEEE 754 Standard.  That
is, NaN is not close to anything, even itself.  inf and -inf are
only close to themselves.isfinite($module, x, /)
--

Return True if x is neither an infinity nor a NaN, and False otherwise.isinf($module, x, /)
--

Return True if x is a positive or negative infinity, and False otherwise.isnan($module, x, /)
--

Return True if x is a NaN (not a number), and False otherwise.isqrt($module, n, /)
--

Return the integer part of the square root of the input.ldexp($module, x, i, /)
--

Return x * (2**i).

This is essentially the inverse of frexp().lgamma($module, x, /)
--

Natural logarithm of absolute value of Gamma function at x.log(x, [base=math.e])
Return the logarithm of x to the given base.

If the base not specified, returns the natural logarithm (base e) of x.log1p($module, x, /)
--

Return the natural logarithm of 1+x (base e).

The result is computed in a way which is accurate for x near zero.log10($module, x, /)
--

Return the base 10 logarithm of x.log2($module, x, /)
--

Return the base 2 logarithm of x.modf($module, x, /)
--

Return the fractional and integer parts of x.

Both results carry the sign of x and are floats.pow($module, x, y, /)
--

Return x**y (x to the power of y).radians($module, x, /)
--

Convert angle x from degrees to radians.remainder($module, x, y, /)
--

Difference between x and the closest integer multiple of y.

Return x - n*y where n*y is the closest integer multiple of y.
In the case where x is exactly halfway between two multiples of
y, the nearest even value of n is used. The result is always exact.sin($module, x, /)
--

Return the sine of x (measured in radians).sinh($module, x, /)
--

Return the hyperbolic sine of x.sqrt($module, x, /)
--

Return the square root of x.tan($module, x, /)
--

Return the tangent of x (measured in radians).tanh($module, x, /)
--

Return the hyperbolic tangent of x.trunc($module, x, /)
--

Truncates the Real x to the nearest Integral toward 0.

Uses the __trunc__ magic method.prod($module, iterable, /, *, start=1)
--

Calculate the product of all the elements in the input iterable.

The default start value for the product is 1.

When the iterable is empty, return the start value.  This function is
intended specifically for use with numeric values and may reject
non-numeric types.perm($module, n, k=None, /)
--

Number of ways to choose k items from n items without repetition and with order.

Evaluates to n! / (n - k)! when k <= n and evaluates
to zero when k > n.

If k is not specified or is None, then k defaults to n
and the function returns n!.

Raises TypeError if either of the arguments are not integers.
Raises ValueError if either of the arguments are negative.comb($module, n, k, /)
--

Number of ways to choose k items from n items without repetition and without order.

Evaluates to n! / (k! * (n - k)!) when k <= n and evaluates
to zero when k > n.

Also called the binomial coefficient because it is equivalent
to the coefficient of k-th term in polynomial expansion of the
expression (1 + x)**n.

Raises TypeError if either of the arguments are not integers.
Raises ValueError if either of the arguments are negative.x_7a(s(;LXww0uw~Cs+|g!??@@8@^@@@@&AKAAA2A(;L4BuwsBuwB7Bs6Ch0{CZAC Ƶ;(DlYaRwNDCQBWLup#B2 B&"B补A?tA*_{A]v}ALPEA뇇BAX@R;{`Zj@'
@AiAApqAAqqiA{DAA@@P@?isqrtremaindertruncmath.log requires 1 to 2 argumentsinfcoshfrexpgcdfactorial() argument should not exceed %ldgamma-inf + inf in fsummath.fsum partialsfabssinhlog10prodpowacosO:logradiansmath range error__ceil__type %.100s doesn't define __trunc__ method(di)k must be a non-negative integerexpisinftancopysigntolerances must be non-negativeOO:log(dd)tauloglog2modfpermisqrt() argument must be nonnegativeeacoshtanhnandegreeserfisfiniteldexpsqrtasinhceilexpm1isclosefsumboth points must have the same number of dimensionsUnreachable C code path reacheda__trunc__isnanintermediate overflow in fsumfmodrel_tolatanfactorialsincombbatan2erfcfloorhypotlgammamath domain errormin(n - k, k) must not exceed %lldasincosfactorial() only accepts integral values__floor__Expected an int as second argument to ldexp.k must not exceed %lldpiabs_tolmathdistatanhlog1pn must be a non-negative integerfactorial() not defined for negative valuesstart;>\<|\|,LLl<\$%,|&T&t&&)*<,D-t2|:,;=4@dLAAAFHLL|<N\N|NNO4LSdSSST,T	LT,	lTL	<Ut	lZ	]	<a
\b4
cd
d
f
f
<h4h\\iijzRx$pAC
BDAC
MdAC
MAC
MAC
MAC
M!AC
X(AC
M,$(AC
CANT!AC
XtAC
MAC
P$PAC
nAX,AC
P
A$ AC
En$4h!AC
En\ "AC
P| "AC
P "AC
M, "AC
MA,%AC
CAN,p%AC
EQEoA,L&AC
EJAcE,|'AC
PA,P-AC
&EVA,4AC
FA, 5AC
PA,<7AC
MwA$l:PAC
nAX$:PAC
nAX$:RAC
nAZ<;AC
M/A_E9E,$h?@AC
IA,TxA'AC
EVA,xE3AC
KAFAC
MFAC
KFAC
K$FAC
EA,<PGAC
EEoA$lJPAC
nAXK!AC
XKAC
MKAC
PKAC
MKAC
M4KAC
M$TKAC
F,|K-AC
MA,PAC
MA,SAC
MA,0WAC
GiAE,< XAC
G9EYA,lYAC
EE]A,`ZAC
EAoE4@[AC
GJE}A4	[7AC
I@EA$<	]AC
fEZ$d	h]AC
fEZ,	]yAC
BcEJ$	 ^
AC
$	_AC
MAAUHSPH=ZftH=IwDOHEdf.HHHHrHH[]@UHH=ftH=
dt
H=d]N]UHSPH=vNHHMNH5HHNNH5HHNNH5HHN1NNH5HHN1NfNH5HHdNHH[]f.UHHH5e1]Cf.UHHH5e1]Cf.UHHH5d1]Cf.UHHH5d1]jCf.UHHH5d1]JCf.UHHHEH
HH]?Df.DUHHH5rd1]Bf.UHAVSIH5{LwMHtXHH@t'H@8HHtH111HH1MMH111MMIHuHLM
UMHtE1L[A^]H5cL[A^]FfUHHHcH
LHH]OCf.DUHHH5c1]
Bf.UHHH5c]AUHHFH;ict"HLf.uzLHt1]F޼Y]KUHAWAVAUATSHHL-cIMHMHt$HH=HHLL3LcIFuL4LE1HIAID$u L
LHIDžLLI^I;\$u"H|XH<KHuVKIHNbH8H5mKE1IEH;ELH[A\A]A^A_]H.HPIL(L LfWE1L%aE1@G\f(fTfCD1f.A	_0IL9H(J|HGL90tH;atJO:fDJf.u!vJ
κH	f(H J|HGL93f)H;a9J	@Jf.s-'JZHf(i@f(ESIILf)0+JLL L(Lf(0HPI9tLIL-`H H(uHu.ILHHIfWLEG`ELL tL(LHL(6fWf(0f.u{HH
ɸ1f.DHATA\^Yf(X\Xf(X^Yf(X\Xf(XHH9ut'AT^Yf(X\XXf(ˋLX
\XQYHPI9tLf)0dHf(0L-^EuIuLf)0Gf(0uI$uLf)0wGf(0FI
Hf.UHHH`GEf.uz:GHGEG)EGf(E8tFG8!uH]H8H5UG8"u)f(ʷf(EfT
f.vH]9FHz]H8zGHy]H8H5NF1H]f.UHHHFEf.öuzZFHFEG)EFf(E8tFF8!uH\H8H5UF8"u)f(f(EfT
f.vH]YEH\H8FH\H8H5nF1H]f.UHHH5r\]:UHHH5Z\]:UHHH5B\1]j:f.UHAWAVAUATSHHL5[IHEH~H;=[tH5[EtsCEEEEMtf.uzf(EHuFH[H8H5E1IH;EfHH[A\A]A^A_]HEHtHHuHEIHtIuHIDIu
NDHuẼu)H[H8H5d1H1mEkMx#tI.HJ<XEHCHZH8H5&@EHIHHHIH?H?uLA?I)ϿLLeHHIAOLHHrIHHHCHHHAH:=HtvILHDIuLICLHLtOI$uLIBLLIIHuDHt!IIEuLBLMLeELHL5YuBI$LBHL5XYHHuHwBM1MLHHQH!uI)LLCHIEL/BBDUHAVSIH5gpLAHtXHH@t'H@8HHtH111HH1AH111AIHuHA
AHtE1L[A^]H5XL[A^]r:fUHSH(HHt$HH=HAPH;HGH;Xt)UAf.uz4AH!GEH{HGH;Wt)Af.Yuz@H?GENAtEAtEy`AEM;Bf)Ef.7A8tB-A8!uH9WH8H5!VA8"u*f(CfTE
nf.v (EH([]?HVH8@HVH8H5j@1H([]@1Ef.E!JщUUHSHHVHHEHFH;vVt0H?f.u#z!?HtzHH;Eu{1H[]Ff.z7EE?fWMf.Eu{uH}@u	E1HH;EuH=.H[]@|?DUHAWAVAUATSHXHL5UIHE@HEIH@H8Hø HfWLE1f(%fWfW_HHLg@HHILf(CDIML#@HHfWf(%!HCH;THH;T>CRfD[>f.C-'=*HfWf(%fWf(%HME1f(f.u(f)f(e>]HI9L4HI9M9HI9HH
?HPHJHH>zDH<f(%fWM2f(1E1HI9ALf(fTf(fTf.f(fTfUfVwf(f(X\\f.umCLIUD<^<tXXE1M1&;LHtZ1I$i;HfWf.u{cf.L5QaHDžIHuH:hHQH8H5EMHDžMKDIHfWMLIATf(X\\f.u{II|fWf.L5Qv	fA.Dwf.vZADfWf.vIXXf(\f.uzL5P@9HI$u7-LHPH8H591L5NPI$uLo9HI9tL;IH;EuHHX[A\A]A^A_]9H	PH8H59f.UHH@H 9f)Ef.cuz8H9f(E9fWt3f(Mf.u5z3r9!f(DfTE
?fVLf(Mf.s.?f(9f(Uf.fWf.9!
%f)M88tG88!uHNH8H58B88"u)f(fTE
-f.v%(EH@]q7HNH881H@]HNH8H5f.f(fT
	f.v3^E8+(8"Mf.اvhfWf.
@8EXe9,{H
HcHE,HH
QL%f(Xf(\
.XX\fTfUfVY%^fWf.f)Ef)ef)mvd
'8EX8,H
EHcHEM6"
ͦ
(f.fWYffXjf(ffYfXfYfXjfYfXfYfXBfYfXfYfXfYfXަfYfXfYfXfYfXfYfX~fYzfXf(f^f)]f(7f(M^f(EYXf)EAf(Mf.vqX
nf(Ed7YE:f(ffWɸH
Hkf^\f\fXH
_f^ffXHY
X
ݤf(E6f(MYYEXEX)\EY>6]o\EY"6EXsY6"EXYj6fWf(
zfTMfVYfW^sEXY6"EX'Y6fW
ʣ^^MMf(E5f(MYEXf.fWYffXf(ffYfX֤fYfXfYfX.fYfXrfYfXfYfXfYfXfYfXfYfXfYfXʣfYfXfY%fXf(mf(f^^Y\f)Ef.vsX
f(E4f(M}f(ffWҸH
MHf(mf^dfdfXH
zf^ffXHY
cX
#f(E14f(M^^f(f)EF2tm2"f(MXH=!4UHAWAVSPHHt HH=H1tNH;Ls2Ht=HL2HtIHH3IHt'Iu-HuH1E1LH[A^A_]H0IuL0fDUHAWAVAUATSHIIHGHHEH|J<0IHu06MLPfW1E14DGf(fT
_fC1f.	_IM9t~f(K|HGH;Ft@H;Ft
500
sf.)#/VH@j?@Xf)@f(B0t?HwFf(@fW/HPI9tL01HDFtCH,FIHF|fWf(@f.uLH
[1ҐHAA\^Yf(X\Xf(X^Yf(X\Xf(XHH9uAt'AT^Yf(X\XXf(X
XQYHPI9tLf)@
/f(@-HH;MuHĘ[A\A]A^A_].f.UHAWAVAUATSHhIIL%DI$HEHtIHYHHELb\E1LLAPjj0H HILI1MtAIuI>HGH;cDt)-f.uz-HGI~HGH;$Df)Et)p-f.u!zO-HXW	f(f(EfWIui2fWf.fWf.f.ux]f)UV-uf(EH-/1I~Ht;HGH;]Ct8f)U,f.u+z),Hל'_f(f(Ef(UfWfWI.I~HGH;Bt|]f)U4,f.|umzk,Hu HBH8H57X,+HtE1HH.II$H;ELHh[A\A]A^A_]gf(f(Ef(U]fW{f(ef(f(U\f(
gfT]YfTf.zYfT@f.d1xf.N+f.UHHFH;At"H+f._uz*Ht1]F>+Hc]-UHHFH;yAt"H*f.uz*Ht1]F	+Hc]0-UHHFH;)At"Hw*f.uzV*Ht1]F1f.@],f.@UHAWAVAUATSH(H7+HIH,L,L,HHXIIH@L,II$uL)I>(LHHH>QHH;HHH51f<HH)1HHHoH1HhH?H8H5b)I$uL(1HH([A\A]A^A_]I$uL(1H([A\A]A^A_]+*H]AAfDLHHIAHuAOLHHUHHLHX+H]HH4+HHuH}H/(H}HHH>QHH;HHH51f4HH)1HHHtrH1HHm'H%1HD(HHHHL9HHH([A\A]A^A_]}*Hu'HHg31H*MHL*HAAHMDL}HEMHMIHuL)L)L)HHL}HHu*IHuH&MHuHLH]HQ(HHHu&HHL)HtItHu0HHk&HIuLHW&HHYHUHJMHHIH'Ht1HLH1T)AHuH&At
Eu"LCLH}H%H<H0LL)HIuL%I$L%IL%UHAWAVSH(HL=9<IHMHt HH=*Hp%taH;HGH;;t%G%f.uz&%Hu6yGH{HGu0H
<H8H5K%1IH;MH([A^A_]f)EHu&IHtdHHX}HIIDE1fWf(Ef.uHzF7%D0/%8!%8!u_H-;H8H5fQ$H]A%tH9|nf(MfT
fVf)MA"$8"u*f(fTE
f.vIf(E^#H:H8$HH9-f(EfT9f)EHp:H8H5E4$f(E&f)E#A"#UHH@HP#f)Ef.uz*#H#(E
$tYf(E$
f(]f.rhf.ubz`fWfWf)Ef.x#!Rf)Ef(Uf(2fTfUfVf)Mf(lfTؒf.vf(%fWf)EGf.f)UgfWYffX
f(ffYfX
fYfX
fYfX
fYfX
\fYfX
fYfX
fYfX
fYfX
fYfX
fYfX
fYfX
fYfXf(f^$XE
f(Uf(Xf)ExXX$XYEXEfWf.MCf)E
f(E"EX%#,H
HcHEsf(ffWҸH
ɯH2ff^DfDfXH

f^ffXHEX
\EY>">EXʐY""fWEXnY"fTd#
|\Mf(EI#M\\Mf(f)EM tt "i 8tG_ 8!uHk6H8H5SB= 8"u)f(pfTE
f.v%(EH@]H 6H8  1H@]H6H8H5H=S!fUHAWAVATSH L%5I$HEHEHFHt-HH1HUHH1<"u+H1HUHMHH1"H}H]H5iIHtbMt]H5HMHtfILH!HIuL9Iu'L+HB5H8H5&1LI$H;Eu HH [A\A^A_]IuLf.UHHH541]f.UHHH5b]f.fUHHH5]lf.fUHSH(H04HHEHFH;4t"Hdf.uzCHt1iFf)E!t H}f(E M(Ett/f(xf(MfTH=9HH;Mu$H([]f(Ef.{H=f(Ef(?f.DUHSH8HHt$HH=HH;HGH;3t)Uf.uz4HGH{HGH;2f)Et3f.YuzH]?f)Ef(E
Of)Mtf(Etq]f(Ef(Mf)Ezf(Ef.A^fWf(Mf.@:!5f(Ef.f(Mf.t?f(Ef(fTE
fH~ff(EFf(f(UfT
͊f)Mf.uf.f(]fWf.f)]`1f(MfWf(Uf.vufT
:f)M7uz_f)E$ufWf)EfT
f)M"8tB8!uH0H8H5V8"u*f(ÊfTE
f.v (EH8[]1Hr0H8rHq0H8H5F1H8[]
f.CfWf.fWf)MLf(MfW
ۊf)Mf.0*!fWf(U
8fTfUfVf)U
fTfUEfVf)EfDUHHFH;y/t"Hf.uzHt1]FYF]UHHH2H
YHH]f.DUHHH5b/1]Z
f.UHHH5J/]7
UHHH52/1]
f.UHHH5/1]f.UHHH5/1]f.UHAWAVSPHH~Hu	0xvH5%FH=HtXIH@t'H@8IHtL111LH1L111IIu<L2HtE1#H.H8HCHPH5ɧE11>LH[A^A_]UHAWAVAUATSH8IL%-I$HEHtjHYHHEL]EE1HLAPjj'H HOLH8Ht0Lx5H.IMt'I71HtIuH>	IHHKIIGH;,FH;,AGEIuLL-,E1HI$tMuMLHIH@L9tfH;[,uLHu}ttEHHHLIHyI$uL*MyEAYD$EI$7L*WH*I$uLMMEYEIHuLIă}eWI*E!DHxIEMM?LCHIH +I9ELHuz}HWH*IYEWH*f.u\f(f(%fWfWfTfUfVf(fWfWf(fUfTfVYf.sMLHMHHLIHIELaMIEIAL7IIuL$E1IGH;)!fDLHt2MMt^LHt'HLH_IItHuHHL%w)t#IuLE1IusE1L%R)IuaLtWIuLdoHLIL%)'IEuL3IL%(uLE1I$H;EuiLH8[A\A]A^A_]IuLHL%(uEfII$uLIuLE1L%z(SUHAWAVAUATSH(HIIL-O(IEHEHBHr!H=HI6HMvL;5(HfHrIH@H;'t%LHIuLIH=L HIH@H;'t!LHIuLIHtlIxtI~LL11HIuLaILOLHIL{H&H8H5LH&H8H5m4HuL}~`H&H8H5@H1'IuLIuL1IEH;E	HH([A\A]A^A_]IHtMu
IHHILIHILLI|rIL}L}HL&H0H]HuHHHuHtQHH]HHuHHHuHt8H]IuH}HHHYOH}HHEHH}=f.UHAWAVAUATSH(HL-5%IMHMHt$HH=HkH;LsgHIH@H;$t%LHIuL
IHqL!HIH@H;$t!LHIuL
IHtWIxbI~xvLLHHHxxpHL1IuLX
IILH$H8H5Π
H#H8H5$}
wHuH1vHIIumAHuHEx4HuL}~`H#H8H5H1
IuLIuLx1IEH;EHH([A\A]A^A_]HtHu"FL9IuL+IHQIHuLHHHNIH)HUL}LHMHHHEHHHMH"H0LeLI$uLILHHHHE
IHuHoMtHLH}nHt9IHHkHHHu:I$FL'91H}HuHtHjH
]H}H
@UHAVSH AH
Ef.{uz

Hu9ZEMf.z'f.{!HM!H8H55
1H [A^]f)E
t&EStEtH!H8H5f(E-t9
8t/
8!t
8"u,f(zfTE
zf.v(EH [A^]_	H H8
Uf.UHAVSH IHHtHȺH	$H;	Ef.yuzn	HH{l	Ef.yuzF	H	EMAf.f)E	t4E
tE	t
	"		8tGz	8!uHH8H5n	EX	8"u,f(yfTE
xf.v+(EH [A^]H8H88	1H [A^]H.H8H5Ef.EV!Qf.UHSH(f)Mf.f)E~f(Ert<f(MЅt[f(UfThywfVfT
Tyf.uuzs|x{fWf(Mf.u{)u%f((MH([]ZfT
yxAf(UfTxwfVfT
xf.uzf(xwfVH([]wfUHSHHEf.bwuz
HuwEMf.zf.z>f)EGtEu"f(EtXR8tNH8!uHTH8H5<1H[]8"u*f(RwfTE
}vf.v (EH[]`HH8HH8H5Ֆf.fUHAWAVATSIHHH)IIH=w5LIH@w(HGH9HHH9r[A\A^A_]IIID$HHHALHtJILHLpHHt@LHIIuLLHtHu
H9E1L[A\A^A_]E1Iuf.UHAWAVSHIHL=IHEHGu$IH;EHL1H[A^A_]H{H+f.uEEHtoHdH8dt|kHuHof.tuzEYEHuKAE7tAf(WH*EYXEAHH8H5Öd1IH;MuH[A^A_]fUHHEtfWEf.v2H]fWMf.f(rBI![t-4!EtfH~H
uH]fDUHHE>tfWEf.v2H]1fWMf.f(rB!s-!EsfH~H
qtH]fDUHSPEfWɅtEf.v+H[]Ef.r92!Ds$fH~Ã!HsH[]UHH0)Mf)E*trf(EtdfWf(Mf.u{f(rf(EfTfTf)Mf)E(Mf(Mf(f(\f.wrf.vDfWJsf(^f(Mf(Ef.zkf(f.za(Ef(EtOPrEf(E\YqUUX\f(MfT
riqfVYH0]UHfWf.uz]]HUHSPHCHHHHrHH[]HHH軰H5/%/@%/h%/h%/h%/h%/h%/h%/h%/hp%z/h`%r/h	P%j/h
@%b/h0%Z/h %R/h
%J/h%B/h%:/h%2/h%*/h%"/h%/h%/h%
/h%/hp%.h`%.hP%.h@%.h0%.h %.h%.h%.h%.h %.h!%.h"%.h#%.h$%.h%%.h&%.h'p%z.h(`%r.h)P%j.h*@%b.h+0%Z.h, %R.h-%J.h.%B.h/%:.h0%2.h1%*.h2%".h3%.h4%.h5%
.h6%.h7p%-h8`%-h9P%-h:@%-h;0%-h< %-h=%-h>%-h?%-h@%-hA%-hB%-hC%-hD%-hE%-hF%-hGp%z-hH`%r-hIP%j-hJ@%b-hK0%Z-hL %R-hM%J-hNj 	o)hHd
o

l
|oo
o&6FVfv&6FVfv&6FVfv&6FVfv&6FVfvFreeBSD clang version 11.0.1 (git@github.com:llvm/llvm-project.git llvmorg-11.0.1-0-g43ff75f2c3fe)Linker: LLD 11.0.1 (FreeBSD llvmorg-11.0.1-0-g43ff75f2c3fe-1300007)$FreeBSD$.shstrtab.note.tag.dynsym.gnu.version.gnu.version_r.gnu.hash.hash.dynstr.rela.dyn.rela.plt.rodata.eh_frame_hdr.eh_frame.text.init.fini.plt.ctors.dtors.jcr.init_array.data.rel.ro.dynamic.got.data.got.plt.commentpp 
o+o

P:o

,D

hJddRB  \B))hf20101$n4U4U|0W0W
@q@a,Oll||HHH0

Zerion Mini Shell 1.0