%PDF- %PDF-
Mini Shell

Mini Shell

Direktori : /usr/local/lib/python3.8/__pycache__/
Upload File :
Create Path :
Current File : //usr/local/lib/python3.8/__pycache__/numbers.cpython-38.pyc

U

na(@sdZddlmZmZdddddgZGddded	ZGd
ddeZeeGdddeZ	e	e
Gddde	ZGd
ddeZee
dS)z~Abstract Base Classes (ABCs) for numbers, according to PEP 3141.

TODO: Fill out more detailed documentation on the operators.)ABCMetaabstractmethodNumberComplexRealRationalIntegralc@seZdZdZdZdZdS)rzAll numbers inherit from this class.

    If you just want to check if an argument x is a number, without
    caring what kind, use isinstance(x, Number).
    N)__name__
__module____qualname____doc__	__slots____hash__r	r	r	#/usr/local/lib/python3.8/numbers.pyrs)	metaclassc@seZdZdZdZeddZddZeeddZ	eed	d
Z
eddZed
dZeddZ
eddZddZddZeddZeddZeddZeddZedd Zed!d"Zed#d$Zed%d&Zed'd(Zd)S)*rabComplex defines the operations that work on the builtin complex type.

    In short, those are: a conversion to complex, .real, .imag, +, -,
    *, /, abs(), .conjugate, ==, and !=.

    If it is given heterogeneous arguments, and doesn't have special
    knowledge about them, it should fall back to the builtin complex
    type as described below.
    r	cCsdS)z<Return a builtin complex instance. Called for complex(self).Nr	selfr	r	r__complex__-szComplex.__complex__cCs|dkS)z)True if self != 0. Called for bool(self).rr	rr	r	r__bool__1szComplex.__bool__cCstdS)zXRetrieve the real component of this number.

        This should subclass Real.
        NNotImplementedErrorrr	r	rreal5szComplex.realcCstdS)z]Retrieve the imaginary component of this number.

        This should subclass Real.
        Nrrr	r	rimag>szComplex.imagcCstdS)zself + otherNrrotherr	r	r__add__GszComplex.__add__cCstdS)zother + selfNrrr	r	r__radd__LszComplex.__radd__cCstdS)z-selfNrrr	r	r__neg__QszComplex.__neg__cCstdS)z+selfNrrr	r	r__pos__VszComplex.__pos__cCs
||S)zself - otherr	rr	r	r__sub__[szComplex.__sub__cCs
||S)zother - selfr	rr	r	r__rsub___szComplex.__rsub__cCstdS)zself * otherNrrr	r	r__mul__cszComplex.__mul__cCstdS)zother * selfNrrr	r	r__rmul__hszComplex.__rmul__cCstdS)z5self / other: Should promote to float when necessary.Nrrr	r	r__truediv__mszComplex.__truediv__cCstdS)zother / selfNrrr	r	r__rtruediv__rszComplex.__rtruediv__cCstdS)zBself**exponent; should promote to float or complex when necessary.Nr)rexponentr	r	r__pow__wszComplex.__pow__cCstdS)zbase ** selfNr)rbaser	r	r__rpow__|szComplex.__rpow__cCstdS)z7Returns the Real distance from 0. Called for abs(self).Nrrr	r	r__abs__szComplex.__abs__cCstdS)z$(x+y*i).conjugate() returns (x-y*i).Nrrr	r	r	conjugateszComplex.conjugatecCstdS)z
self == otherNrrr	r	r__eq__szComplex.__eq__N)r
rrr
rrrrpropertyrrrrrrr r!r"r#r$r%r'r)r*r+r,r	r	r	rr sN













c@seZdZdZdZeddZeddZeddZed	d
Z	ed&dd
Z
ddZddZeddZ
eddZeddZeddZeddZeddZddZed d!Zed"d#Zd$d%ZdS)'rzTo Complex, Real adds the operations that work on real numbers.

    In short, those are: a conversion to float, trunc(), divmod,
    %, <, <=, >, and >=.

    Real also provides defaults for the derived operations.
    r	cCstdS)zTAny Real can be converted to a native float object.

        Called for float(self).Nrrr	r	r	__float__szReal.__float__cCstdS)aGtrunc(self): Truncates self to an Integral.

        Returns an Integral i such that:
          * i>0 iff self>0;
          * abs(i) <= abs(self);
          * for any Integral j satisfying the first two conditions,
            abs(i) >= abs(j) [i.e. i has "maximal" abs among those].
        i.e. "truncate towards 0".
        Nrrr	r	r	__trunc__szReal.__trunc__cCstdS)z$Finds the greatest Integral <= self.Nrrr	r	r	__floor__szReal.__floor__cCstdS)z!Finds the least Integral >= self.Nrrr	r	r__ceil__sz
Real.__ceil__NcCstdS)zRounds self to ndigits decimal places, defaulting to 0.

        If ndigits is omitted or None, returns an Integral, otherwise
        returns a Real. Rounds half toward even.
        Nr)rZndigitsr	r	r	__round__szReal.__round__cCs||||fS)zdivmod(self, other): The pair (self // other, self % other).

        Sometimes this can be computed faster than the pair of
        operations.
        r	rr	r	r
__divmod__szReal.__divmod__cCs||||fS)zdivmod(other, self): The pair (self // other, self % other).

        Sometimes this can be computed faster than the pair of
        operations.
        r	rr	r	r__rdivmod__szReal.__rdivmod__cCstdS)z)self // other: The floor() of self/other.Nrrr	r	r__floordiv__szReal.__floordiv__cCstdS)z)other // self: The floor() of other/self.Nrrr	r	r
__rfloordiv__szReal.__rfloordiv__cCstdS)zself % otherNrrr	r	r__mod__szReal.__mod__cCstdS)zother % selfNrrr	r	r__rmod__sz
Real.__rmod__cCstdS)zRself < other

        < on Reals defines a total ordering, except perhaps for NaN.Nrrr	r	r__lt__szReal.__lt__cCstdS)z
self <= otherNrrr	r	r__le__szReal.__le__cCstt|S)z(complex(self) == complex(float(self), 0))complexfloatrr	r	rrszReal.__complex__cCs|
S)z&Real numbers are their real component.r	rr	r	rrsz	Real.realcCsdS)z)Real numbers have no imaginary component.rr	rr	r	rrsz	Real.imagcCs|
S)zConjugate is a no-op for Reals.r	rr	r	rr+szReal.conjugate)N)r
rrr
rrr.r/r0r1r2r3r4r5r6r7r8r9r:rr-rrr+r	r	r	rrs@











c@s<eZdZdZdZeeddZeeddZddZ	d	S)
rz6.numerator and .denominator should be in lowest terms.r	cCstdSNrrr	r	r	numeratorszRational.numeratorcCstdSr=rrr	r	rdenominatorszRational.denominatorcCs|j|jS)afloat(self) = self.numerator / self.denominator

        It's important that this conversion use the integer's "true"
        division rather than casting one side to float before dividing
        so that ratios of huge integers convert without overflowing.

        )r>r?rr	r	rr.szRational.__float__N)
r
rrr
rr-rr>r?r.r	r	r	rrsc@seZdZdZdZeddZddZed&dd	Zed
dZ	edd
Z
eddZeddZeddZ
eddZeddZeddZeddZeddZeddZd d!Zed"d#Zed$d%ZdS)'rz@Integral adds a conversion to int and the bit-string operations.r	cCstdS)z	int(self)Nrrr	r	r__int__+szIntegral.__int__cCst|S)z6Called whenever an index is needed, such as in slicing)intrr	r	r	__index__0szIntegral.__index__NcCstdS)a4self ** exponent % modulus, but maybe faster.

        Accept the modulus argument if you want to support the
        3-argument version of pow(). Raise a TypeError if exponent < 0
        or any argument isn't Integral. Otherwise, just implement the
        2-argument version described in Complex.
        Nr)rr&modulusr	r	rr'4s	zIntegral.__pow__cCstdS)z
self << otherNrrr	r	r
__lshift__?szIntegral.__lshift__cCstdS)z
other << selfNrrr	r	r__rlshift__DszIntegral.__rlshift__cCstdS)z
self >> otherNrrr	r	r
__rshift__IszIntegral.__rshift__cCstdS)z
other >> selfNrrr	r	r__rrshift__NszIntegral.__rrshift__cCstdS)zself & otherNrrr	r	r__and__SszIntegral.__and__cCstdS)zother & selfNrrr	r	r__rand__XszIntegral.__rand__cCstdS)zself ^ otherNrrr	r	r__xor__]szIntegral.__xor__cCstdS)zother ^ selfNrrr	r	r__rxor__bszIntegral.__rxor__cCstdS)zself | otherNrrr	r	r__or__gszIntegral.__or__cCstdS)zother | selfNrrr	r	r__ror__lszIntegral.__ror__cCstdS)z~selfNrrr	r	r
__invert__qszIntegral.__invert__cCstt|S)zfloat(self) == float(int(self)))r<rArr	r	rr.wszIntegral.__float__cCs|
S)z"Integers are their own numerators.r	rr	r	rr>{szIntegral.numeratorcCsdS)z!Integers have a denominator of 1.r	rr	r	rr?szIntegral.denominator)N)r
rrr
rrr@rBr'rDrErFrGrHrIrJrKrLrMrNr.r-r>r?r	r	r	rr&sD













N)r
abcrr__all__rrregisterr;rr<rrrAr	r	r	r<module>sp
u
_

Zerion Mini Shell 1.0