%PDF- %PDF-
Mini Shell

Mini Shell

Direktori : /usr/local/go/src/math/big/
Upload File :
Create Path :
Current File : //usr/local/go/src/math/big/arith_s390x.s

// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

//go:build !math_big_pure_go
// +build !math_big_pure_go

#include "textflag.h"

// This file provides fast assembly versions for the elementary
// arithmetic operations on vectors implemented in arith.go.

TEXT ·mulWW(SB), NOSPLIT, $0
	MOVD   x+0(FP), R3
	MOVD   y+8(FP), R4
	MULHDU R3, R4
	MOVD   R10, z1+16(FP)
	MOVD   R11, z0+24(FP)
	RET


// DI = R3, CX = R4, SI = r10, r8 = r8, r9=r9, r10 = r2, r11 = r5, r12 = r6, r13 = r7, r14 = r1 (R0 set to 0) + use R11
// func addVV(z, x, y []Word) (c Word)

TEXT ·addVV(SB), NOSPLIT, $0
	MOVD addvectorfacility+0x00(SB), R1
	BR   (R1)

TEXT ·addVV_check(SB), NOSPLIT, $0
	MOVB   ·hasVX(SB), R1
	CMPBEQ R1, $1, vectorimpl              // vectorfacility = 1, vector supported
	MOVD   $addvectorfacility+0x00(SB), R1
	MOVD   $·addVV_novec(SB), R2
	MOVD   R2, 0(R1)

	// MOVD	$·addVV_novec(SB), 0(R1)
	BR ·addVV_novec(SB)

vectorimpl:
	MOVD $addvectorfacility+0x00(SB), R1
	MOVD $·addVV_vec(SB), R2
	MOVD R2, 0(R1)

	// MOVD	$·addVV_vec(SB), 0(R1)
	BR ·addVV_vec(SB)

GLOBL addvectorfacility+0x00(SB), NOPTR, $8
DATA addvectorfacility+0x00(SB)/8, $·addVV_check(SB)

TEXT ·addVV_vec(SB), NOSPLIT, $0
	MOVD z_len+8(FP), R3
	MOVD x+24(FP), R8
	MOVD y+48(FP), R9
	MOVD z+0(FP), R2

	MOVD $0, R4  // c = 0
	MOVD $0, R0  // make sure it's zero
	MOVD $0, R10 // i = 0

	// s/JL/JMP/ below to disable the unrolled loop
	SUB $4, R3
	BLT v1
	SUB $12, R3 // n -= 16
	BLT A1      // if n < 0 goto A1

	MOVD R8, R5
	MOVD R9, R6
	MOVD R2, R7

	// n >= 0
	// regular loop body unrolled 16x
	VZERO V0 // c = 0

UU1:
	VLM  0(R5), V1, V4    // 64-bytes into V1..V8
	ADD  $64, R5
	VPDI $0x4, V1, V1, V1 // flip the doublewords to big-endian order
	VPDI $0x4, V2, V2, V2 // flip the doublewords to big-endian order

	VLM  0(R6), V9, V12      // 64-bytes into V9..V16
	ADD  $64, R6
	VPDI $0x4, V9, V9, V9    // flip the doublewords to big-endian order
	VPDI $0x4, V10, V10, V10 // flip the doublewords to big-endian order

	VACCCQ V1, V9, V0, V25
	VACQ   V1, V9, V0, V17
	VACCCQ V2, V10, V25, V26
	VACQ   V2, V10, V25, V18

	VLM 0(R5), V5, V6   // 32-bytes into V1..V8
	VLM 0(R6), V13, V14 // 32-bytes into V9..V16
	ADD $32, R5
	ADD $32, R6

	VPDI $0x4, V3, V3, V3    // flip the doublewords to big-endian order
	VPDI $0x4, V4, V4, V4    // flip the doublewords to big-endian order
	VPDI $0x4, V11, V11, V11 // flip the doublewords to big-endian order
	VPDI $0x4, V12, V12, V12 // flip the doublewords to big-endian order

	VACCCQ V3, V11, V26, V27
	VACQ   V3, V11, V26, V19
	VACCCQ V4, V12, V27, V28
	VACQ   V4, V12, V27, V20

	VLM 0(R5), V7, V8   // 32-bytes into V1..V8
	VLM 0(R6), V15, V16 // 32-bytes into V9..V16
	ADD $32, R5
	ADD $32, R6

	VPDI $0x4, V5, V5, V5    // flip the doublewords to big-endian order
	VPDI $0x4, V6, V6, V6    // flip the doublewords to big-endian order
	VPDI $0x4, V13, V13, V13 // flip the doublewords to big-endian order
	VPDI $0x4, V14, V14, V14 // flip the doublewords to big-endian order

	VACCCQ V5, V13, V28, V29
	VACQ   V5, V13, V28, V21
	VACCCQ V6, V14, V29, V30
	VACQ   V6, V14, V29, V22

	VPDI $0x4, V7, V7, V7    // flip the doublewords to big-endian order
	VPDI $0x4, V8, V8, V8    // flip the doublewords to big-endian order
	VPDI $0x4, V15, V15, V15 // flip the doublewords to big-endian order
	VPDI $0x4, V16, V16, V16 // flip the doublewords to big-endian order

	VACCCQ V7, V15, V30, V31
	VACQ   V7, V15, V30, V23
	VACCCQ V8, V16, V31, V0  // V0 has carry-over
	VACQ   V8, V16, V31, V24

	VPDI  $0x4, V17, V17, V17 // flip the doublewords to big-endian order
	VPDI  $0x4, V18, V18, V18 // flip the doublewords to big-endian order
	VPDI  $0x4, V19, V19, V19 // flip the doublewords to big-endian order
	VPDI  $0x4, V20, V20, V20 // flip the doublewords to big-endian order
	VPDI  $0x4, V21, V21, V21 // flip the doublewords to big-endian order
	VPDI  $0x4, V22, V22, V22 // flip the doublewords to big-endian order
	VPDI  $0x4, V23, V23, V23 // flip the doublewords to big-endian order
	VPDI  $0x4, V24, V24, V24 // flip the doublewords to big-endian order
	VSTM  V17, V24, 0(R7)     // 128-bytes into z
	ADD   $128, R7
	ADD   $128, R10           // i += 16
	SUB   $16, R3             // n -= 16
	BGE   UU1                 // if n >= 0 goto U1
	VLGVG $1, V0, R4          // put cf into R4
	NEG   R4, R4              // save cf

A1:
	ADD $12, R3 // n += 16

	// s/JL/JMP/ below to disable the unrolled loop
	BLT v1 // if n < 0 goto v1

U1:  // n >= 0
	// regular loop body unrolled 4x
	MOVD 0(R8)(R10*1), R5
	MOVD 8(R8)(R10*1), R6
	MOVD 16(R8)(R10*1), R7
	MOVD 24(R8)(R10*1), R1
	ADDC R4, R4             // restore CF
	MOVD 0(R9)(R10*1), R11
	ADDE R11, R5
	MOVD 8(R9)(R10*1), R11
	ADDE R11, R6
	MOVD 16(R9)(R10*1), R11
	ADDE R11, R7
	MOVD 24(R9)(R10*1), R11
	ADDE R11, R1
	MOVD R0, R4
	ADDE R4, R4             // save CF
	NEG  R4, R4
	MOVD R5, 0(R2)(R10*1)
	MOVD R6, 8(R2)(R10*1)
	MOVD R7, 16(R2)(R10*1)
	MOVD R1, 24(R2)(R10*1)

	ADD $32, R10 // i += 4
	SUB $4, R3   // n -= 4
	BGE U1       // if n >= 0 goto U1

v1:
	ADD $4, R3 // n += 4
	BLE E1     // if n <= 0 goto E1

L1:  // n > 0
	ADDC R4, R4            // restore CF
	MOVD 0(R8)(R10*1), R5
	MOVD 0(R9)(R10*1), R11
	ADDE R11, R5
	MOVD R5, 0(R2)(R10*1)
	MOVD R0, R4
	ADDE R4, R4            // save CF
	NEG  R4, R4

	ADD $8, R10 // i++
	SUB $1, R3  // n--
	BGT L1      // if n > 0 goto L1

E1:
	NEG  R4, R4
	MOVD R4, c+72(FP) // return c
	RET

TEXT ·addVV_novec(SB), NOSPLIT, $0
novec:
	MOVD z_len+8(FP), R3
	MOVD x+24(FP), R8
	MOVD y+48(FP), R9
	MOVD z+0(FP), R2

	MOVD $0, R4  // c = 0
	MOVD $0, R0  // make sure it's zero
	MOVD $0, R10 // i = 0

	// s/JL/JMP/ below to disable the unrolled loop
	SUB $4, R3 // n -= 4
	BLT v1n    // if n < 0 goto v1n

U1n:  // n >= 0
	// regular loop body unrolled 4x
	MOVD 0(R8)(R10*1), R5
	MOVD 8(R8)(R10*1), R6
	MOVD 16(R8)(R10*1), R7
	MOVD 24(R8)(R10*1), R1
	ADDC R4, R4             // restore CF
	MOVD 0(R9)(R10*1), R11
	ADDE R11, R5
	MOVD 8(R9)(R10*1), R11
	ADDE R11, R6
	MOVD 16(R9)(R10*1), R11
	ADDE R11, R7
	MOVD 24(R9)(R10*1), R11
	ADDE R11, R1
	MOVD R0, R4
	ADDE R4, R4             // save CF
	NEG  R4, R4
	MOVD R5, 0(R2)(R10*1)
	MOVD R6, 8(R2)(R10*1)
	MOVD R7, 16(R2)(R10*1)
	MOVD R1, 24(R2)(R10*1)

	ADD $32, R10 // i += 4
	SUB $4, R3   // n -= 4
	BGE U1n      // if n >= 0 goto U1n

v1n:
	ADD $4, R3 // n += 4
	BLE E1n    // if n <= 0 goto E1n

L1n:  // n > 0
	ADDC R4, R4            // restore CF
	MOVD 0(R8)(R10*1), R5
	MOVD 0(R9)(R10*1), R11
	ADDE R11, R5
	MOVD R5, 0(R2)(R10*1)
	MOVD R0, R4
	ADDE R4, R4            // save CF
	NEG  R4, R4

	ADD $8, R10 // i++
	SUB $1, R3  // n--
	BGT L1n     // if n > 0 goto L1n

E1n:
	NEG  R4, R4
	MOVD R4, c+72(FP) // return c
	RET

TEXT ·subVV(SB), NOSPLIT, $0
	MOVD subvectorfacility+0x00(SB), R1
	BR   (R1)

TEXT ·subVV_check(SB), NOSPLIT, $0
	MOVB   ·hasVX(SB), R1
	CMPBEQ R1, $1, vectorimpl              // vectorfacility = 1, vector supported
	MOVD   $subvectorfacility+0x00(SB), R1
	MOVD   $·subVV_novec(SB), R2
	MOVD   R2, 0(R1)

	// MOVD	$·subVV_novec(SB), 0(R1)
	BR ·subVV_novec(SB)

vectorimpl:
	MOVD $subvectorfacility+0x00(SB), R1
	MOVD $·subVV_vec(SB), R2
	MOVD R2, 0(R1)

	// MOVD	$·subVV_vec(SB), 0(R1)
	BR ·subVV_vec(SB)

GLOBL subvectorfacility+0x00(SB), NOPTR, $8
DATA subvectorfacility+0x00(SB)/8, $·subVV_check(SB)

// DI = R3, CX = R4, SI = r10, r8 = r8, r9=r9, r10 = r2, r11 = r5, r12 = r6, r13 = r7, r14 = r1 (R0 set to 0) + use R11
// func subVV(z, x, y []Word) (c Word)
// (same as addVV except for SUBC/SUBE instead of ADDC/ADDE and label names)
TEXT ·subVV_vec(SB), NOSPLIT, $0
	MOVD z_len+8(FP), R3
	MOVD x+24(FP), R8
	MOVD y+48(FP), R9
	MOVD z+0(FP), R2
	MOVD $0, R4          // c = 0
	MOVD $0, R0          // make sure it's zero
	MOVD $0, R10         // i = 0

	// s/JL/JMP/ below to disable the unrolled loop
	SUB $4, R3  // n -= 4
	BLT v1      // if n < 0 goto v1
	SUB $12, R3 // n -= 16
	BLT A1      // if n < 0 goto A1

	MOVD R8, R5
	MOVD R9, R6
	MOVD R2, R7

	// n >= 0
	// regular loop body unrolled 16x
	VZERO V0         // cf = 0
	MOVD  $1, R4     // for 390 subtraction cf starts as 1 (no borrow)
	VLVGG $1, R4, V0 // put carry into V0

UU1:
	VLM  0(R5), V1, V4    // 64-bytes into V1..V8
	ADD  $64, R5
	VPDI $0x4, V1, V1, V1 // flip the doublewords to big-endian order
	VPDI $0x4, V2, V2, V2 // flip the doublewords to big-endian order

	VLM  0(R6), V9, V12      // 64-bytes into V9..V16
	ADD  $64, R6
	VPDI $0x4, V9, V9, V9    // flip the doublewords to big-endian order
	VPDI $0x4, V10, V10, V10 // flip the doublewords to big-endian order

	VSBCBIQ V1, V9, V0, V25
	VSBIQ   V1, V9, V0, V17
	VSBCBIQ V2, V10, V25, V26
	VSBIQ   V2, V10, V25, V18

	VLM 0(R5), V5, V6   // 32-bytes into V1..V8
	VLM 0(R6), V13, V14 // 32-bytes into V9..V16
	ADD $32, R5
	ADD $32, R6

	VPDI $0x4, V3, V3, V3    // flip the doublewords to big-endian order
	VPDI $0x4, V4, V4, V4    // flip the doublewords to big-endian order
	VPDI $0x4, V11, V11, V11 // flip the doublewords to big-endian order
	VPDI $0x4, V12, V12, V12 // flip the doublewords to big-endian order

	VSBCBIQ V3, V11, V26, V27
	VSBIQ   V3, V11, V26, V19
	VSBCBIQ V4, V12, V27, V28
	VSBIQ   V4, V12, V27, V20

	VLM 0(R5), V7, V8   // 32-bytes into V1..V8
	VLM 0(R6), V15, V16 // 32-bytes into V9..V16
	ADD $32, R5
	ADD $32, R6

	VPDI $0x4, V5, V5, V5    // flip the doublewords to big-endian order
	VPDI $0x4, V6, V6, V6    // flip the doublewords to big-endian order
	VPDI $0x4, V13, V13, V13 // flip the doublewords to big-endian order
	VPDI $0x4, V14, V14, V14 // flip the doublewords to big-endian order

	VSBCBIQ V5, V13, V28, V29
	VSBIQ   V5, V13, V28, V21
	VSBCBIQ V6, V14, V29, V30
	VSBIQ   V6, V14, V29, V22

	VPDI $0x4, V7, V7, V7    // flip the doublewords to big-endian order
	VPDI $0x4, V8, V8, V8    // flip the doublewords to big-endian order
	VPDI $0x4, V15, V15, V15 // flip the doublewords to big-endian order
	VPDI $0x4, V16, V16, V16 // flip the doublewords to big-endian order

	VSBCBIQ V7, V15, V30, V31
	VSBIQ   V7, V15, V30, V23
	VSBCBIQ V8, V16, V31, V0  // V0 has carry-over
	VSBIQ   V8, V16, V31, V24

	VPDI  $0x4, V17, V17, V17 // flip the doublewords to big-endian order
	VPDI  $0x4, V18, V18, V18 // flip the doublewords to big-endian order
	VPDI  $0x4, V19, V19, V19 // flip the doublewords to big-endian order
	VPDI  $0x4, V20, V20, V20 // flip the doublewords to big-endian order
	VPDI  $0x4, V21, V21, V21 // flip the doublewords to big-endian order
	VPDI  $0x4, V22, V22, V22 // flip the doublewords to big-endian order
	VPDI  $0x4, V23, V23, V23 // flip the doublewords to big-endian order
	VPDI  $0x4, V24, V24, V24 // flip the doublewords to big-endian order
	VSTM  V17, V24, 0(R7)     // 128-bytes into z
	ADD   $128, R7
	ADD   $128, R10           // i += 16
	SUB   $16, R3             // n -= 16
	BGE   UU1                 // if n >= 0 goto U1
	VLGVG $1, V0, R4          // put cf into R4
	SUB   $1, R4              // save cf

A1:
	ADD $12, R3 // n += 16
	BLT v1      // if n < 0 goto v1

U1:  // n >= 0
	// regular loop body unrolled 4x
	MOVD 0(R8)(R10*1), R5
	MOVD 8(R8)(R10*1), R6
	MOVD 16(R8)(R10*1), R7
	MOVD 24(R8)(R10*1), R1
	MOVD R0, R11
	SUBC R4, R11            // restore CF
	MOVD 0(R9)(R10*1), R11
	SUBE R11, R5
	MOVD 8(R9)(R10*1), R11
	SUBE R11, R6
	MOVD 16(R9)(R10*1), R11
	SUBE R11, R7
	MOVD 24(R9)(R10*1), R11
	SUBE R11, R1
	MOVD R0, R4
	SUBE R4, R4             // save CF
	MOVD R5, 0(R2)(R10*1)
	MOVD R6, 8(R2)(R10*1)
	MOVD R7, 16(R2)(R10*1)
	MOVD R1, 24(R2)(R10*1)

	ADD $32, R10 // i += 4
	SUB $4, R3   // n -= 4
	BGE U1       // if n >= 0 goto U1n

v1:
	ADD $4, R3 // n += 4
	BLE E1     // if n <= 0 goto E1

L1:  // n > 0
	MOVD R0, R11
	SUBC R4, R11           // restore CF
	MOVD 0(R8)(R10*1), R5
	MOVD 0(R9)(R10*1), R11
	SUBE R11, R5
	MOVD R5, 0(R2)(R10*1)
	MOVD R0, R4
	SUBE R4, R4            // save CF

	ADD $8, R10 // i++
	SUB $1, R3  // n--
	BGT L1      // if n > 0 goto L1n

E1:
	NEG  R4, R4
	MOVD R4, c+72(FP) // return c
	RET

// DI = R3, CX = R4, SI = r10, r8 = r8, r9=r9, r10 = r2, r11 = r5, r12 = r6, r13 = r7, r14 = r1 (R0 set to 0) + use R11
// func subVV(z, x, y []Word) (c Word)
// (same as addVV except for SUBC/SUBE instead of ADDC/ADDE and label names)
TEXT ·subVV_novec(SB), NOSPLIT, $0
	MOVD z_len+8(FP), R3
	MOVD x+24(FP), R8
	MOVD y+48(FP), R9
	MOVD z+0(FP), R2

	MOVD $0, R4  // c = 0
	MOVD $0, R0  // make sure it's zero
	MOVD $0, R10 // i = 0

	// s/JL/JMP/ below to disable the unrolled loop
	SUB $4, R3 // n -= 4
	BLT v1     // if n < 0 goto v1

U1:  // n >= 0
	// regular loop body unrolled 4x
	MOVD 0(R8)(R10*1), R5
	MOVD 8(R8)(R10*1), R6
	MOVD 16(R8)(R10*1), R7
	MOVD 24(R8)(R10*1), R1
	MOVD R0, R11
	SUBC R4, R11            // restore CF
	MOVD 0(R9)(R10*1), R11
	SUBE R11, R5
	MOVD 8(R9)(R10*1), R11
	SUBE R11, R6
	MOVD 16(R9)(R10*1), R11
	SUBE R11, R7
	MOVD 24(R9)(R10*1), R11
	SUBE R11, R1
	MOVD R0, R4
	SUBE R4, R4             // save CF
	MOVD R5, 0(R2)(R10*1)
	MOVD R6, 8(R2)(R10*1)
	MOVD R7, 16(R2)(R10*1)
	MOVD R1, 24(R2)(R10*1)

	ADD $32, R10 // i += 4
	SUB $4, R3   // n -= 4
	BGE U1       // if n >= 0 goto U1

v1:
	ADD $4, R3 // n += 4
	BLE E1     // if n <= 0 goto E1

L1:  // n > 0
	MOVD R0, R11
	SUBC R4, R11           // restore CF
	MOVD 0(R8)(R10*1), R5
	MOVD 0(R9)(R10*1), R11
	SUBE R11, R5
	MOVD R5, 0(R2)(R10*1)
	MOVD R0, R4
	SUBE R4, R4            // save CF

	ADD $8, R10 // i++
	SUB $1, R3  // n--
	BGT L1      // if n > 0 goto L1

E1:
	NEG  R4, R4
	MOVD R4, c+72(FP) // return c
	RET

TEXT ·addVW(SB), NOSPLIT, $0
	MOVD z_len+8(FP), R5 // length of z
	MOVD x+24(FP), R6
	MOVD y+48(FP), R7    // c = y
	MOVD z+0(FP), R8

	CMPBEQ R5, $0, returnC // if len(z) == 0, we can have an early return

	// Add the first two words, and determine which path (copy path or loop path) to take based on the carry flag.
	ADDC   0(R6), R7
	MOVD   R7, 0(R8)
	CMPBEQ R5, $1, returnResult // len(z) == 1
	MOVD   $0, R9
	ADDE   8(R6), R9
	MOVD   R9, 8(R8)
	CMPBEQ R5, $2, returnResult // len(z) == 2

	// Update the counters
	MOVD $16, R12    // i = 2
	MOVD $-2(R5), R5 // n = n - 2

loopOverEachWord:
	BRC  $12, copySetup // carry = 0, copy the rest
	MOVD $1, R9

	// Originally we used the carry flag generated in the previous iteration
	// (i.e: ADDE could be used here to do the addition).  However, since we
	// already know carry is 1 (otherwise we will go to copy section), we can use
	// ADDC here so the current iteration does not depend on the carry flag
	// generated in the previous iteration. This could be useful when branch prediction happens.
	ADDC 0(R6)(R12*1), R9
	MOVD R9, 0(R8)(R12*1) // z[i] = x[i] + c

	MOVD  $8(R12), R12         // i++
	BRCTG R5, loopOverEachWord // n--

// Return the current carry value
returnResult:
	MOVD $0, R0
	ADDE R0, R0
	MOVD R0, c+56(FP)
	RET

// Update position of x(R6) and z(R8) based on the current counter value and perform copying.
// With the assumption that x and z will not overlap with each other or x and z will
// point to same memory region, we can use a faster version of copy using only MVC here.
// In the following implementation, we have three copy loops, each copying a word, 4 words, and
// 32 words at a time.  Via benchmarking, this implementation is faster than calling runtime·memmove.
copySetup:
	ADD R12, R6
	ADD R12, R8

	CMPBGE R5, $4, mediumLoop

smallLoop:  // does a loop unrolling to copy word when n < 4
	CMPBEQ R5, $0, returnZero
	MVC    $8, 0(R6), 0(R8)
	CMPBEQ R5, $1, returnZero
	MVC    $8, 8(R6), 8(R8)
	CMPBEQ R5, $2, returnZero
	MVC    $8, 16(R6), 16(R8)

returnZero:
	MOVD $0, c+56(FP) // return 0 as carry
	RET

mediumLoop:
	CMPBLT R5, $4, smallLoop
	CMPBLT R5, $32, mediumLoopBody

largeLoop:  // Copying 256 bytes at a time.
	MVC    $256, 0(R6), 0(R8)
	MOVD   $256(R6), R6
	MOVD   $256(R8), R8
	MOVD   $-32(R5), R5
	CMPBGE R5, $32, largeLoop
	BR     mediumLoop

mediumLoopBody:  // Copying 32 bytes at a time
	MVC    $32, 0(R6), 0(R8)
	MOVD   $32(R6), R6
	MOVD   $32(R8), R8
	MOVD   $-4(R5), R5
	CMPBGE R5, $4, mediumLoopBody
	BR     smallLoop

returnC:
	MOVD R7, c+56(FP)
	RET

TEXT ·subVW(SB), NOSPLIT, $0
	MOVD z_len+8(FP), R5
	MOVD x+24(FP), R6
	MOVD y+48(FP), R7    // The borrow bit passed in
	MOVD z+0(FP), R8
	MOVD $0, R0          // R0 is a temporary variable used during computation. Ensure it has zero in it.

	CMPBEQ R5, $0, returnC // len(z) == 0, have an early return

	// Subtract the first two words, and determine which path (copy path or loop path) to take based on the borrow flag
	MOVD   0(R6), R9
	SUBC   R7, R9
	MOVD   R9, 0(R8)
	CMPBEQ R5, $1, returnResult
	MOVD   8(R6), R9
	SUBE   R0, R9
	MOVD   R9, 8(R8)
	CMPBEQ R5, $2, returnResult

	// Update the counters
	MOVD $16, R12    // i = 2
	MOVD $-2(R5), R5 // n = n - 2

loopOverEachWord:
	BRC  $3, copySetup    // no borrow, copy the rest
	MOVD 0(R6)(R12*1), R9

	// Originally we used the borrow flag generated in the previous iteration
	// (i.e: SUBE could be used here to do the subtraction). However, since we
	// already know borrow is 1 (otherwise we will go to copy section), we can
	// use SUBC here so the current iteration does not depend on the borrow flag
	// generated in the previous iteration. This could be useful when branch prediction happens.
	SUBC $1, R9
	MOVD R9, 0(R8)(R12*1) // z[i] = x[i] - 1

	MOVD  $8(R12), R12         // i++
	BRCTG R5, loopOverEachWord // n--

// return the current borrow value
returnResult:
	SUBE R0, R0
	NEG  R0, R0
	MOVD R0, c+56(FP)
	RET

// Update position of x(R6) and z(R8) based on the current counter value and perform copying.
// With the assumption that x and z will not overlap with each other or x and z will
// point to same memory region, we can use a faster version of copy using only MVC here.
// In the following implementation, we have three copy loops, each copying a word, 4 words, and
// 32 words at a time. Via benchmarking, this implementation is faster than calling runtime·memmove.
copySetup:
	ADD R12, R6
	ADD R12, R8

	CMPBGE R5, $4, mediumLoop

smallLoop:  // does a loop unrolling to copy word when n < 4
	CMPBEQ R5, $0, returnZero
	MVC    $8, 0(R6), 0(R8)
	CMPBEQ R5, $1, returnZero
	MVC    $8, 8(R6), 8(R8)
	CMPBEQ R5, $2, returnZero
	MVC    $8, 16(R6), 16(R8)

returnZero:
	MOVD $0, c+56(FP) // return 0 as borrow
	RET

mediumLoop:
	CMPBLT R5, $4, smallLoop
	CMPBLT R5, $32, mediumLoopBody

largeLoop:  // Copying 256 bytes at a time
	MVC    $256, 0(R6), 0(R8)
	MOVD   $256(R6), R6
	MOVD   $256(R8), R8
	MOVD   $-32(R5), R5
	CMPBGE R5, $32, largeLoop
	BR     mediumLoop

mediumLoopBody:  // Copying 32 bytes at a time
	MVC    $32, 0(R6), 0(R8)
	MOVD   $32(R6), R6
	MOVD   $32(R8), R8
	MOVD   $-4(R5), R5
	CMPBGE R5, $4, mediumLoopBody
	BR     smallLoop

returnC:
	MOVD R7, c+56(FP)
	RET

// func shlVU(z, x []Word, s uint) (c Word)
TEXT ·shlVU(SB), NOSPLIT, $0
	BR ·shlVU_g(SB)

// func shrVU(z, x []Word, s uint) (c Word)
TEXT ·shrVU(SB), NOSPLIT, $0
	BR ·shrVU_g(SB)

// CX = R4, r8 = r8, r9=r9, r10 = r2, r11 = r5, DX = r3, AX = r6, BX = R1, (R0 set to 0) + use R11 + use R7 for i
// func mulAddVWW(z, x []Word, y, r Word) (c Word)
TEXT ·mulAddVWW(SB), NOSPLIT, $0
	MOVD z+0(FP), R2
	MOVD x+24(FP), R8
	MOVD y+48(FP), R9
	MOVD r+56(FP), R4    // c = r
	MOVD z_len+8(FP), R5
	MOVD $0, R1          // i = 0
	MOVD $0, R7          // i*8 = 0
	MOVD $0, R0          // make sure it's zero
	BR   E5

L5:
	MOVD   (R8)(R1*1), R6
	MULHDU R9, R6
	ADDC   R4, R11         // add to low order bits
	ADDE   R0, R6
	MOVD   R11, (R2)(R1*1)
	MOVD   R6, R4
	ADD    $8, R1          // i*8 + 8
	ADD    $1, R7          // i++

E5:
	CMPBLT R7, R5, L5 // i < n

	MOVD R4, c+64(FP)
	RET

// func addMulVVW(z, x []Word, y Word) (c Word)
// CX = R4, r8 = r8, r9=r9, r10 = r2, r11 = r5, AX = r11, DX = R6, r12=r12, BX = R1, (R0 set to 0) + use R11 + use R7 for i
TEXT ·addMulVVW(SB), NOSPLIT, $0
	MOVD z+0(FP), R2
	MOVD x+24(FP), R8
	MOVD y+48(FP), R9
	MOVD z_len+8(FP), R5

	MOVD $0, R1 // i*8 = 0
	MOVD $0, R7 // i = 0
	MOVD $0, R0 // make sure it's zero
	MOVD $0, R4 // c = 0

	MOVD   R5, R12
	AND    $-2, R12
	CMPBGE R5, $2, A6
	BR     E6

A6:
	MOVD   (R8)(R1*1), R6
	MULHDU R9, R6
	MOVD   (R2)(R1*1), R10
	ADDC   R10, R11        // add to low order bits
	ADDE   R0, R6
	ADDC   R4, R11
	ADDE   R0, R6
	MOVD   R6, R4
	MOVD   R11, (R2)(R1*1)

	MOVD   (8)(R8)(R1*1), R6
	MULHDU R9, R6
	MOVD   (8)(R2)(R1*1), R10
	ADDC   R10, R11           // add to low order bits
	ADDE   R0, R6
	ADDC   R4, R11
	ADDE   R0, R6
	MOVD   R6, R4
	MOVD   R11, (8)(R2)(R1*1)

	ADD $16, R1 // i*8 + 8
	ADD $2, R7  // i++

	CMPBLT R7, R12, A6
	BR     E6

L6:
	MOVD   (R8)(R1*1), R6
	MULHDU R9, R6
	MOVD   (R2)(R1*1), R10
	ADDC   R10, R11        // add to low order bits
	ADDE   R0, R6
	ADDC   R4, R11
	ADDE   R0, R6
	MOVD   R6, R4
	MOVD   R11, (R2)(R1*1)

	ADD $8, R1 // i*8 + 8
	ADD $1, R7 // i++

E6:
	CMPBLT R7, R5, L6 // i < n

	MOVD R4, c+56(FP)
	RET


Zerion Mini Shell 1.0